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Abstract 49	
  

This is the second part of a three-part paper on North American climate in CMIP5 that 50	
  

evaluates the 20th century simulations of intra-seasonal to multi-decadal variability and 51	
  

teleconnections with North American climate. Overall, the multi-model ensemble does 52	
  

reasonably well at reproducing observed variability in several aspects, but does less well 53	
  

at capturing observed teleconnections, with implications for future projections examined 54	
  

in part three of this paper. In terms of intra-seasonal variability, almost half of the models 55	
  

examined can reproduce observed variability in the eastern Pacific and most models 56	
  

capture the midsummer drought over Central America. The multi-model mean replicates 57	
  

the density of traveling tropical synoptic-scale disturbances but with large spread among 58	
  

the models. On the other hand, the coarse resolution of the models means that tropical 59	
  

cyclone frequencies are under predicted in the Atlantic and eastern North Pacific. The 60	
  

frequency and mean amplitude of ENSO are generally well reproduced, although 61	
  

teleconnections with North American climate are widely varying among models and only 62	
  

a few models can reproduce the east and central Pacific types of ENSO and connections 63	
  

with US winter temperatures. The models capture the spatial pattern of PDO variability 64	
  

and its influence on continental temperature and West coast precipitation, but less well 65	
  

for the wintertime precipitation. The spatial representation of the AMO is reasonable but 66	
  

the magnitude of SST anomalies and teleconnections are poorly reproduced. Multi-67	
  

decadal trends such as the warming hole over the central-southeast US and precipitation 68	
  

increases are not replicated by the models, suggesting that observed changes are linked to 69	
  

natural variability.  70	
  

 71	
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1. Introduction 72	
  

This is the second part of a three-part paper on the Climate Model 73	
  

Intercomparison Project phase 5 (CMIP5; Taylor et al., 2012) model simulations for 74	
  

North America. This second part evaluates the CMIP5 models in their ability to replicate 75	
  

the observed variability of North American continental and regional climate, and related 76	
  

climate processes. The first part (Sheffield et al., 2012) evaluates the representation of the 77	
  

climatology of continental and regional climate features. The third part (Maloney et al., 78	
  

2012) describes the projected changes for the 21st century.  79	
  

The CMIP5 provides an unprecedented collection of climate model output data 80	
  

for the assessment of future climate projections as well as evaluations of climate models 81	
  

for contemporary climate, the attribution of observed climate change and improved 82	
  

understanding of climate processes and feedbacks. As such, these data contribute to the 83	
  

Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), and 84	
  

other global, regional and national assessments. 85	
  

The goal of this study is to provide a broad evaluation of CMIP5 models in their 86	
  

depiction of North American climate variability. It draws from individual work by 87	
  

investigators within the CMIP5 Task Force of the US National Oceanic and Atmospheric 88	
  

Administration (NOAA) Modeling Analysis and Prediction Program (MAPP) and is part 89	
  

of a Journal of Climate special collection on North America in CMIP5. We draw from 90	
  

individual papers within the special issue, which provide more detailed analysis that can 91	
  

be presented in this synthesis paper.  92	
  

We begin in Section 2 by describing the CMIP5, providing an overview of the 93	
  

models analyzed, the historical simulations and the general methodology for evaluating 94	
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the models. Details of the main observational datasets to which the climate models are 95	
  

compared are also given in this section. The next 5 sections focus on different aspects of 96	
  

North American climate variability, organized by the time scale of the climate feature. 97	
  

Section 3 covers intraseasonal variability with focus on variability in the eastern Pacific 98	
  

Ocean and summer drought over the southern US and Central America. Atlantic and east 99	
  

Pacific tropical cyclone activity is evaluated in Section 4. Interannual climate variability 100	
  

is assessed in Section 5. Decadal variability and multi-decadal trends are assessed in 101	
  

Sections 6 and 7, respectively. Finally, the results are synthesized in Section 8. 102	
  

 103	
  

2. CMIP5 Models and Simulations 104	
  

2.1. CMIP5 Models  105	
  

We use data from multiple model simulations of the “historical” scenario from the 106	
  

CMIP5 database. The CMIP5 experiments were carried out by 20 modeling groups 107	
  

representing more than 50 climate models with the aim of further understanding past and 108	
  

future climate change in key areas of uncertainty (Taylor et al., 2012). In particular, 109	
  

experiments have been focused on understanding model differences in clouds and carbon 110	
  

feedbacks, quantifying decadal climate predictability and why models give different 111	
  

answers when driven by the same forcings. The CMIP5 builds on the previous phase 112	
  

(CMIP3) experiments in several ways. Firstly a greater number of modeling centers and 113	
  

models have participated. Secondly, the models are more comprehensive in terms of the 114	
  

processes that they represent and are run at higher spatial resolution, therefore hopefully 115	
  

resulting in better skill in representing current climate conditions and reducing 116	
  

uncertainty in future projections. Table 1 provides an overview of the models used. The 117	
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specific models used vary for each individual analysis because of data availability at the 118	
  

time of this study, and so the model names are provided within the results section where 119	
  

appropriate. 120	
  

 121	
  

2.2. Overview of Methods 122	
  

Data from the “historical” CMIP5 scenario are evaluated, which is a coupled 123	
  

atmosphere-ocean mode simulation that is forced by historical estimates of changes in 124	
  

atmospheric composition from natural and anthropogenic sources, volcanoes, greenhouse 125	
  

gases and aerosols, as well as changes in solar output and land cover. Historical scenario 126	
  

simulations were carried out for the period from the start of the industrial revolution to 127	
  

near present: 1850-2005. Our evaluations are generally carried out for the last 30 years of 128	
  

the simulations, depending on the type of analysis and the availability of observations. 129	
  

For some analyses the only, or best available, data are from satellite remote sensing 130	
  

which restricts the analysis to the satellite period, which is generally from 1979 onwards. 131	
  

In other cases the observational data are very uncertain for particular regions and time 132	
  

periods (for example, precipitation in high latitudes in the first half of the 20th century) 133	
  

and this is noted in the relevant sub-section. For other analyses, multiple observational 134	
  

datasets are available and are used to capture the uncertainty in the observations. The 135	
  

observational datasets are summarized in Table 2 and further details of the datasets and 136	
  

data processing are given in the relevant sub-sections and figure captions. Where the 137	
  

comparisons go beyond 2005 (e.g. 1979-2008), data from the model RCP8.5 future 138	
  

projection scenario simulation (as this is regarded as closest to the business as usual 139	
  

trajectory) are appended to the model historical time series. About half the models have 140	
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multiple ensemble members, but we select the first ensemble member for simplicity and 141	
  

discuss the variability in the results across the ensemble where appropriate. 142	
  

 143	
  

3. Tropical Intraseasonal Variability 144	
  

3.1. MJO-related variability over the eastern Pacific and adjoining regions 145	
  

It has been well documented that convection over the eastern Pacific (EPAC) 146	
  

ITCZ and neighboring areas is characterized by pronounced intraseasonal variability 147	
  

(ISV) during boreal summer (e.g., Knutson and Weickmann, 1987; Kayano and Kousky, 148	
  

1999; Maloney and Hartmann, 2000a; Maloney and Esbensen, 2003, 2007; de Szoeke 149	
  

and Bretherton, 2005; Jiang and Waliser, 2008, 2009, 2011). ISV over the EPAC exerts 150	
  

broad impacts on regional weather and climate phenomena, including tropical cyclone 151	
  

activity over the EPAC and the Gulf of Mexico, the summertime gap wind near the Gulfs 152	
  

of Tehuantepec and Papagayo, the Caribbean Low-Level Jet and precipitation, the mid-153	
  

summer drought over Central America and Mexico, and the North American monsoon 154	
  

(e.g., Magana et al., 1999; Maloney and Hartmann, 2000b; Maloney and Hartmann, 155	
  

2000a; Maloney and Esbensen, 2003; Lorenz and Hartmann, 2006; Serra et al., 2010; 156	
  

Martin and Schumacher, 2010).  157	
  

 Here, model fidelity in representing ISV over the EPAC and Intra-America Sea 158	
  

(IAS) region is assessed by analyzing daily output of rainfall and 850hPa winds from 159	
  

eighteen CMIP5 models. Figure 1 displays a Taylor diagram for summer mean (May-160	
  

September) precipitation from the CMIP5 models over the EPAC domain (150oW-80oW; 161	
  

5oS-30oN) compared to the TMPA precipitation. While the two HadGEM models 162	
  

(HadGEM2-CC and HadGEM2-ES) display the highest pattern correlations (~0.93), the 163	
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MRI-CGCM3 show the smallest RMS due to its better skill in simulating the spatial 164	
  

standard deviations of summer mean rainfall over the EPAC. In addition, four models 165	
  

(MPI-ESM-LR, CSIRO-MK3-6-0, CanESM2, and CNRM-CM5) also exhibit relatively 166	
  

better pattern correlations than other models.    167	
  

 The leading ISV modes over the EPAC based on observed and simulated rainfall 168	
  

fields are identified using a complex empirical orthogonal function (CEOF) approach 169	
  

(Maloney et al., 2008). CEOF analyses were applied to 30-90-day band-pass filtered 170	
  

daily rainfall anomalies and the spatial amplitude and phase for the first CEOF mode 171	
  

(CEOF1) based on TMPA are illustrated in Figures 2a and 2b. A single ensemble 172	
  

member was used for each model for 1981-2005. The TMPA data are available for a 173	
  

shorter time period (13 years) but the sensitivity of the results to different sample sizes 174	
  

(based on data from a selected model) was found to be small. Similar to Maloney et al. 175	
  

(2008), the maximum amplitude of the observed rainfall CEOF1 occurs over the far 176	
  

eastern part of the EPAC. Figure 2b illustrates the pattern of spatial phase of observed 177	
  

rainfall CEOF1. In agreement with previous studies, the observed leading ISV mode 178	
  

associated with the CEOF1 largely exhibits an eastward propagation, while a northward 179	
  

component is also evident (e.g., Jiang and Waliser, 2008; Maloney et al., 2008; Jiang et 180	
  

al., 2011).  181	
  

 Next, the fidelity of the CMIP5 models in simulating the leading EPAC ISV 182	
  

mode is assessed by calculating pattern correlations of the simulated rainfall CEOF1 183	
  

against observations. To increase sampling, spatial patterns of rainfall anomalies 184	
  

associated with the CEOF1 based on both observations and model simulations are 185	
  

derived at two quadratic phases by multiplying the CEOF1 amplitude by the Cosine and 186	
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Sine of spatial phase at each grid point, respectively. The pattern correlations are then 187	
  

calculated at both of these two quadratic phases. A final pattern correlation for a 188	
  

particular model is derived by averaging these two pattern correlation coefficients. Figure 189	
  

2c illustrates pattern correlations in depicting the CEOF1 rainfall pattern for each model 190	
  

simulation versus domain averaged CEOF1 amplitude relative to observations, which 191	
  

provide measures of model performance of variability in space and time, respectively. A 192	
  

majority of the CMIP5 models tend to underestimate the amplitude of the leading EPAC 193	
  

ISV mode associated with the rainfall CEOF1, except CNRM-CM5, MIROC5, MPI-194	
  

ESM-LR, and HadGEM2-CC and HadGEM2-ES. Among the eighteen models examined, 195	
  

eight models exhibit relative higher pattern correlations (> 0.75). 196	
  

 The models with relative better skill in representing the leading EPAC ISV mode  197	
  

also largely exhibit better skill for summer mean rainfall (cf. Fig. 1 and Fig. 2c) and 198	
  

850hPa wind patterns (not shown). A common feature among the more skillful models is 199	
  

the presence of westerly or very weak easterly mean low-level winds over the EPAC 200	
  

warm pool region, as in the observations. Most of the models with relatively lower skill 201	
  

exhibit a stronger easterly summer mean flow (> 4 m/s). This suggests that realistic 202	
  

representation of the mean state could be crucial for improved simulations of the EPAC 203	
  

ISV, which is in agreement with a recent study by Rydbeck et al. (2012), and has also 204	
  

been discussed for MJO simulations over the western Pacific and Indian Ocean (e.g., Kim 205	
  

et al., 2009). One hypothesis is that a realistic mean state produces the correct sign of 206	
  

surface flux anomalies relative to intraseasonal precipitation, which helps to destabilize 207	
  

the local intraseasonal disturbance (e.g. Maloney and Esbensen, 2005). Extended 208	
  

analyses of the EPAC ISV in CMIP5 models is given in Jiang et al. (2012). 209	
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 210	
  

3.2. Mid-summer Drought over Central America 211	
  

The rainy season in Central America and southern Mexico spans roughly May 212	
  

through October. For most of the region, the precipitation climatology features maxima in 213	
  

June and September and a period of reduced rainfall during July-August known as the 214	
  

midsummer drought (MSD; Portig et al., 1961, Magaña et al., 1999). The MSD is regular 215	
  

enough to be known colloquially and plays an important role in farming practices 216	
  

(Osgood et al., 2009). A previous assessment of CMIP3 model performance at simulating 217	
  

the MSD and future projections (Rauscher et al., 2008) suggested that many models are 218	
  

capable of simulating the MSD despite an overall dry bias, and that the MSD is projected 219	
  

to become stronger with an earlier onset. In this section, the CMIP5 performance at 220	
  

simulating summertime precipitation and the MSD is evaluated. We evaluate 23 CMIP5 221	
  

models against the TMPA, GPCP and UNAM observational datasets. A simple algorithm 222	
  

for detecting and quantifying the climatological MSD is used that does not assume a 223	
  

priori which months are maxima and which months constitute the MSD (Karnauskas et 224	
  

al., 2012). 225	
  

Figure 3 shows the observational and CMIP5 estimates of the MSD and highlights 226	
  

the large uncertainties in its spatial distribution among observational datasets, The 227	
  

CMIP5 MME does reasonably well at representing the essence of the MSD over much of 228	
  

the Inter-Americas region. The maximum strength of the MSD in the MME is found just 229	
  

offshore of El Salvador and represents a midsummer precipitation minimum that is ~2.5 230	
  

mm/day less than the early- and late-summer peaks. Significant differences in the 231	
  

location and strength of the MSD between the various observational data sets preclude a 232	
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definitive evaluation of the CMIP5 MME, but it is clear that the strength of the MSD is 233	
  

underestimated in some regions, including along the Pacific coast of Central America, the 234	
  

western Caribbean, the major Caribbean islands and Florida. Figure 3 also shows the 235	
  

MME standard deviation and a histogram of the spatial correlations of individual models 236	
  

with the MME mean. The largest uncertainties are collocated with the regions of largest 237	
  

magnitude of the MSD indicating that much of the model disagreement is in the 238	
  

magnitude. Several models stand out as outliers in representing the spatial distribution of 239	
  

the MSD relative to the MME mean (Table 3), such as MIROC-ESM and MIROC-ESM-240	
  

CHEM, whilst the Hadley Center models do particularly well. 241	
  

 242	
  

4. East Pacific and Atlantic tropical storm track and cyclone activity 243	
  

 244	
  

4.1. Tropical Storm Track 245	
  

The density of traveling synoptic-scale disturbances across the Tropics, referred 246	
  

to in the literature as the tropical storm track (e.g. Thorncroft and Hodges 2001; Serra et 247	
  

al. 2008; Serra et al. 2010), is examined in this section. These systems serve as precursors 248	
  

to a majority of tropical storms and hurricanes in the Atlantic and eastern North Pacific 249	
  

and their frequency at 850 hPa over Africa and the eastern Atlantic has been shown to be 250	
  

positively correlated with Atlantic hurricane activity (Thorncroft and Hodges 2001). As 251	
  

global models better resolve these systems than tropical cyclones, they provide an 252	
  

advantage over direct tracking of tropical cyclones to assess model tropical storm activity 253	
  

(see Section 4.2). As in Serra et al. (2010), the tropical storm track density is calculated 254	
  

based on the method of Hodges (1995; 1999) using smoothed, 6-hourly, 850 hPa relative 255	
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vorticity. Only positive vorticity centers with a minimum threshold of 0.5x10-6 s-1 that 256	
  

persist for at least 2 days and have tracks of at least 1000 km in length are included in the 257	
  

analysis. This method primarily identifies westward moving disturbances such as easterly 258	
  

waves (e.g. Serra et al., 2010), although more intense storms that could potentially reach 259	
  

hurricane intensity are not excluded. We analyze a single ensemble member from nine 260	
  

CMIP5 models and compared the track statistics to the ERA-Interim (Figure 4, top). 261	
  

These models were selected based on whether the 6-hourly pressure level data were 262	
  

available at the time of the analysis. Mean track strength, the mean of the smoothed 850 263	
  

hPa vorticity along the track, is also examined (Figure 4, bottom).  264	
  

The multi-model mean track density is in good agreement with ERA-Interim, 265	
  

however significant differences are seen with the individual models. The most apparent 266	
  

discrepancies are with the BCC-CSM1-1, CanESM2 and CCSM4 models, which strongly 267	
  

overestimate activity across the East Pacific and suggest a more longitudinally oriented 268	
  

track (CanESM2 and CCSM4) shifted south from what is observed. BCC-CSM1-1, 269	
  

HadGEM2-ES and MIROC5 underestimate tracks in the West Atlantic, while GFDL-270	
  

ESM2M underestimates tracks throughout the region except near 130°W. MPI-ESM-LR 271	
  

also underestimates tracks across the region as well as shifts their location southward. 272	
  

The track density maximum off the west coast of Mexico is best captured by HadGEM2-273	
  

ES, while the overall smallest magnitude differences are seen with CNRM-CM5. The 274	
  

multi-model mean track strength maximum in the East Pacific lies along the west coast of 275	
  

Mexico similar to ERA-Interim, however it is broader in scale and of larger magnitude 276	
  

than the observations (Figure 4, bottom). On the other hand, the multi-model mean 277	
  

strength in the Gulf of Mexico and West Atlantic along the east coast of the US is 278	
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strongly underestimated compared to ERA-Interim. Unlike for track density, these biases 279	
  

are fairly consistent among the models, with the exception of BCC-CSM1.1, which 280	
  

strongly overestimates mean strength across the region.. 281	
  

To better understand the biases in mean track density and strength we examine the 282	
  

spatial correlations of 850 hPa and 500 hPa winds and heights, as well as track density 283	
  

and strength with the ERA-Interim reanalyses. While all nine models have relatively 284	
  

good spatial correlations in the wind components and heights at 500 hPa (not shown), 285	
  

there is a wide spread in performance at the 850 hPa level that corresponds reasonably 286	
  

well with the rankings for the combined track density and strength correlations (Table 3). 287	
  

In particular, the top two models for the combined 850 hPa wind and height correlations 288	
  

(CNRM-CM5 and HadGEM2-ES) are also among the highest ranked for the combined 289	
  

track density and strength correlations.  On the other hand, CanESM2 has a high ranking 290	
  

in the combined 850 hPa index but is one of the poorer models with respect to track 291	
  

density and spatial correlations, suggesting that there are other important factors 292	
  

contributing to the track statistics than just the large-scale low-level heights and winds 293	
  

across the region. 294	
  

 295	
  

4.2. Tropical Cyclones in the North Atlantic and Eastern North Pacific 296	
  

It is well known since the 1970s that climate models are able to simulate tropical 297	
  

cyclone-like storms  (e.g. Manabe et al., 1970; Bengtsson et al., 1982), which are 298	
  

generally formed at the scale of the model grid when conditions are unstable enough and 299	
  

other factors, such as vertical wind shear, are favorable. As the resolution of the climate 300	
  

models increases, the modeled storm characteristics become more realistic (e.g. Zhao et 301	
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al., 2009). Analysis of CMIP3 models showed that the tropical cyclone-like storms 302	
  

produced still had many biases common of low-resolution models (Walsh et al., 2010). 303	
  

Therefore, various dynamical and statistical techniques for downscaling tropical cyclone 304	
  

activity using only the CMIP3 large-scale variables have been employed (Emanuel et al., 305	
  

2008; Knutson et al., 2008). Recent studies suggest that when forced by observed SSTs 306	
  

and sea-ice concentration, a global atmospheric model with a resolution ranging from 50 307	
  

 to 20km can simulate many aspects of tropical cyclone (TC)/hurricane frequency 308	
  

variability for the past few decades during which reliable observations are available (e.g., 309	
  

Oouchi et al. 2006; Bengtsson et al. 2007; Zhao et al. 2009). The success is not only a 310	
  

direct evaluation of model capability but also an indication of the dominant role of SST 311	
  

variability on TC/hurricane frequency variability. When assuming a persistence of SST 312	
  

anomalies, some of the models were also shown to exhibit significant skill in hurricane 313	
  

seasonal forecast (e.g., Zhao et al. 2010; Vecchi et al. 2011).  314	
  

Tropical storms and cyclones in this study are identified using the tracking 315	
  

method of Camargo and Zebiak (2002), which uses low-level vorticity, surface winds, 316	
  

surface pressure, and atmospheric temperature, and considers only warm core storms. 317	
  

The method uses model-dependent (and resolution) thresholds and storms have to last at 318	
  

least two days. Only a subset of the tropical disturbances examined in the previous 319	
  

section will intensify enough to be identified by this tracking method and the percentage 320	
  

that this occurs will vary among different models. As will be shown, the CMIP5 standard 321	
  

models have trouble simulating the number of tropical cyclones, which can be attributed 322	
  

in part to their coarse resolution. Therefore, we also show results from the GFDL high-323	
  

resolution model. 324	
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TC type structures were tracked in five models for 1950-2005. We compare with 325	
  

observations from best-track datasets of the National Hurricane Center (Figure 5). The 326	
  

number of TCs in all models is much lower than in observations, which is common to 327	
  

many low-resolution global climate models (e.g. Camargo et al., 2005; 2007). The 328	
  

HadGEM2-ES has the largest low bias and the MPI-ESM-LR model has the most 329	
  

realistic tracks in the Atlantic basin. The MRI-CGCM3 model tracks in the Atlantic are 330	
  

mostly in the subtropical region, with very few storms in the deep tropics. In contrast, in 331	
  

the eastern North Pacific the MRI-CGCM3 has storm activity too near the equator. In the 332	
  

eastern North Pacific, very few storms (in all models) have westward tracks. The models 333	
  

seem to have an easier time in producing storms that are in the northwestward direction 334	
  

parallel to the Central American coast. 335	
  

Figure 6 shows the mean number of TCs per month for the North Atlantic and 336	
  

eastern North Pacific. In some cases, the models produce too many storms in the off-337	
  

season, while all models produce too few storms in the peak season. The bottom panels 338	
  

show the spread of the number of storms per year, emphasizing the low number of storms 339	
  

per year in all models. The highest resolution model MRI-CGCM3 (1.1o x 1.1o) has the 340	
  

least bias relative to the observations and the highest bias is for the coarsest resolution 341	
  

model (GFDL-ESM2M, 2.5o x 2.0o). However, resolution cannot explain the rankings for 342	
  

all models, with the HadGEM2-ES and MPI-ESM-LR models having relatively large and 343	
  

small biases, respectively, despite both having intermediate resolutions. The model 344	
  

dynamical core, convection scheme and their interactions are other factors that have been 345	
  

shown to be important (Camargo, 2013).	
   Examination of variability across ensemble 346	
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members in producing tropical cyclones was carried out for five member runs of the 347	
  

MRI-CGCM3 model (not shown) but was much less than among different models. 348	
  

Figure 7 shows results for the GFDL C180HIRAM model, which has a higher-349	
  

resolution (~50km) than the standard coupled GFDL-CM3 model and differs in some 350	
  

aspects of the physics such as the convection scheme. The model was run for a CMIP5 351	
  

time slice experiment forced by observed inter-annually and seasonally varying SSTs and 352	
  

sea-ice concentration from the HadISST data-set (Held et al., 2013). The tracking 353	
  

algorithm of Zhao et al. (2009) was used to identify TCs with near surface wind speed 354	
  

reaching hurricane intensity. The model reproduces the observed statistics with the ratio 355	
  

of observed to model variances of interannual variability in both the N. Atlantic and E. 356	
  

Pacific not statistically different from one, according to an F-test at the 95% significance 357	
  

level. Figure 7 also shows that the model captures the observed seasonal cycle in both the 358	
  

N. Atlantic and E. Pacific. The model can also reproduce the observed seasonal cycle in 359	
  

the N. Atlantic and E. Pacific as well as the observed year-to-year variation of annual 360	
  

hurricane counts and the decadal trend for both basins for this period (Zhao et al. 2009; 361	
  

Held et al. 2013). The quality of the model’s present-day simulation increases our 362	
  

confidence in the future projections, although the uncertainty in the projections is 363	
  

dominated by uncertainty in projected changes in SST boundary conditions across the 364	
  

CMIP5 standard resolution models (Maloney et al., 2013). 365	
  

 366	
  

5. Interannual to decadal variability 367	
  

 368	
  

5.1. El Niño-Southern Oscillation (ENSO) 369	
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The ENSO is the most important driver of global climate variability on inter-370	
  

annual time scales. It impacts many regions worldwide through climate teleconnections 371	
  

(Ropelewski and Halpert, 1987), which link the tropical Pacific to higher latitudes 372	
  

through shifts in mid-latitude weather patterns. The impact of ENSO on North American 373	
  

climate is felt most strongly in the wintertime, with El Niño events bringing warmer 374	
  

temperatures to much of the northern part of the continent and wetter conditions in the 375	
  

southern US and northern Mexico. La Niña events tend to bring drier weather to the 376	
  

southern US. Evaluation of the ability of CMIP5 models to simulate ENSO is carried out 377	
  

for several aspects of ENSO variability and for teleconnections with North American 378	
  

climate.  379	
  

 380	
  

A. Evaluation of ENSO teleconnections 381	
  

We examine how well the historical simulations of CMIP5 models reproduce the 382	
  

composite near-surface air temperature (SAT) and precipitation patterns over North 383	
  

America during El Niño and La Niña episodes. In both model and observed data, we 384	
  

define ENSO episodes similarly to the Climate Prediction Center (CPC). A monthly 385	
  

ENSO index is calculated from detrended and high-pass filtered SSTs over the Niño3.4 386	
  

region (5oS – 5oN, 170oW - 120oW) from ERSSTv3b observations and CMIP5 models. 387	
  

An El Niño (La Niña) episode is defined as any sequence of months where the three-388	
  

month running mean Niño3.4 SST, is greater than 0.5oC (less than -0.5oC) for at least five 389	
  

consecutive three-month running seasons.  390	
  

In observations approximately 90% of El Niño and 89% of La Niña episodes 391	
  

feature peak amplitudes in fall or winter. In the CMIP5 ensemble of the historical 392	
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simulations, however, only 68% of El Niño and 65% of La Niña episodes have peak 393	
  

amplitudes in fall or winter, although several of the models (CanESM2, CNRM-CM5, 394	
  

HadCM3 and NorESM1-M) do have fall/winter peak frequencies exceeding 80% for both 395	
  

El Niño and La Niña episodes. This finding suggests that CMIP5 models do not fully 396	
  

reproduce the phase-locking of ENSO to the seasonal cycle, a deficiency noted in CMIP3 397	
  

models as well (Guilyardi et al. 2009). The following analysis focuses on those episodes 398	
  

that do peak in fall or winter. In the ensemble mean, the frequency of ENSO episodes and 399	
  

the mean peak amplitude are similar to observed values (not shown). 400	
  

Because the dynamics of extratropical ENSO teleconnections are tied to upper 401	
  

tropospheric processes, and because these teleconnections are strongest during boreal 402	
  

winter, we examine how well CMIP5 models reproduce the DJF composite 300hPa 403	
  

geopotential height patterns in the NCEP/NCAR reanalysis. In addition, we attempt to 404	
  

identify what characteristics distinguish higher from lower performance models, where 405	
  

performance is based on the El Niño (La Niña) composites of all height fields for which 406	
  

the detrended Niño 3.4 SST anomaly is greater than 0.5ᵒC (less than -0.5ᵒC). The high 407	
  

performance models are defined as those with a pattern correlation that exceeds 0.6 and 408	
  

an RMS difference less than 13 m between the model and observed composites for both 409	
  

El Niño and La Niña (Figure 8). This subjective partitioning is used as a means of 410	
  

discerning general properties that distinguish higher from lower performance models. 411	
  

Overall, ten (eleven) models are characterized as high (low) performance based on these 412	
  

criteria.  413	
  

Figure 9 shows the composites of 300 hPa geopotential height, SAT, 414	
  

precipitation, and tropical SST for El Niño. The corresponding composites for La Niña 415	
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(not shown) are quite similar but of opposite sign. The higher performance ensemble 416	
  

performs rather well in capturing the basic El Niño geopotential height, SAT, and 417	
  

precipitation teleconnections over the North Pacific and North America, with the 418	
  

exception being the failure to capture the negative precipitation anomaly in the Tennessee 419	
  

and Ohio Valleys. The lower performance ensemble features a much weaker 420	
  

teleconnection pattern and an Aleutian low anomaly that is shifted about 10ᵒ too far west.  421	
  

The composite El Niño SST anomalies (Figs. 2k,l), however, are quite similar.   422	
  

To gain insight into possible reasons for the discrepancies between the higher and 423	
  

lower performance ensemble, Figure 10a shows composite differences in tropical 424	
  

precipitation. The higher performance ensemble exhibits much higher precipitation 425	
  

anomalies in the central and eastern equatorial Pacific Ocean, which suggests that the 426	
  

enhanced convection in these regions could help to explain the stronger and eastward 427	
  

shifted teleconnection pattern relative to the lower performance ensemble.  This enhanced 428	
  

convection may be explained in part by stronger SST anomalies in the higher 429	
  

performance ensemble (Fig. 10b), but most of the large precipitation differences actually 430	
  

occur where the SST anomaly differences are quite small. Instead, a more significant 431	
  

difference appears to be the difference in SST climatology, as the lower performance 432	
  

ensemble exhibits climatological SSTs more than 1ᵒC cooler than the high performance 433	
  

ensemble over the eastern Pacific cold tongue region (Fig. 10c). Indeed, the lower 434	
  

performance ensemble features a negative SST climatology bias of more than 1.5ᵒC in 435	
  

the equatorial central Pacific (Fig. 10e), where the El Niño convection anomalies 436	
  

generally are strongest.  The bias for the higher performance ensemble in this region (Fig. 437	
  

10d) is much weaker. Thus, in the lower performance ensemble, the convection 438	
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anomalies in the eastern Pacific likely are too insensitive to ENSO SST anomalies 439	
  

because the climatological SSTs are too low. This finding suggests that simulation of 440	
  

ENSO teleconnections in some climate models might benefit from improving 441	
  

climatalogical SSTs rather than interannually varying ENSO SST anomalies. As 442	
  

discussed in Li and Xie (2012), tropical SST biases in CMIP models are linked to model 443	
  

errors in cloud cover and ocean dynamics, with equatorial cold tongue biases closely tied 444	
  

to errors in thermocline depth and upwelling. 445	
  

 446	
  

B. East Pacific/Central Pacific ENSO and Teleconnections with US Winter Surface Air 447	
  

Temperature 448	
  

It has been increasingly recognized that different types of ENSO occur in the 449	
  

tropical Pacific (e.g. Wang and Weisberg, 2000; Trenberth and Stepaniak, 2001; Larkin 450	
  

and Harrison, 2005; Yu and Kao, 2007; Ashok et al., 2007; Kao and Yu, 2009; Kug et al., 451	
  

2009). Two particular types that have been emphasized are the Eastern-Pacific (EP) type 452	
  

that produces SST anomalies near the South America coast and the Central-Pacific (CP) 453	
  

type that produces anomalies near the international dateline. While the EP ENSO is the 454	
  

conventional type of ENSO, the CP ENSO has gradually increased its occurrence during 455	
  

the past few decades (e.g. Lee and McPhaden, 2010). Recent observational studies have 456	
  

indicated that the impacts produced by these two types of ENSO on North American 457	
  

climate can be different (e.g., Mo 2011; Yu et al. 2012; Yu and Zhou, 2013). Here the 458	
  

ENSO teleconnection over the US simulated in the CMIP5 models are further examined 459	
  

according to the ENSO type. Following Kao and Yu (2009) and Yu and Kim (2010), a 460	
  

regression-EOF analysis is used to identify the CP and EP types from monthly SSTs. The 461	
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SST anomalies regressed with the Niño1+2 SST index were removed before the EOF 462	
  

analysis was applied to obtain the spatial pattern of the CP ENSO. Similarly, we 463	
  

subtracted the SST anomalies regressed with the Niño4 SST index before the EOF 464	
  

analysis was applied to identify the leading structure of the EP ENSO. The principal 465	
  

components of the leading EOF modes represent the ENSO strengths and are defined as 466	
  

the CP ENSO index and the EP ENSO index. The observed winter (DJF) SAT anomalies 467	
  

regressed to theses two indices are different over the US (Figure 11a,b) with a warm 468	
  

northeast to cold southwest pattern for the EP El Niño and a warm northwest to cold 469	
  

southeast pattern for the CP El Niño. Adding these two impact patterns together results in 470	
  

a pattern that resembles the well-known warm-north, cold-south pattern of El Niño 471	
  

impact.. The robustness of these two different impact patterns has been examined in Yu 472	
  

et al. (2012) using numerical model experiments and case studies. They showed that 473	
  

impact patterns similar to those shown in Figure 11 can be reproduced in two ensemble 474	
  

AGCM experiments forced separately by the EP and CP ENSO SST anomalies (see their 475	
  

Fig. 1). The regressed impact patterns can also be identified in US winter temperature 476	
  

anomalies during the four strongest EP El Niño events (i.e., 1997-98, 1982-83, 1972-73, 477	
  

and 1986-87) and three of the four strongest CP El Niño events (i.e., 2009-10, 1957-58, 478	
  

and 2002-2003). 479	
  

We repeated the EOF and regression analyses to evaluate how well the CMIP5 480	
  

models reproduce the different US impacts to the two types of ENSO. The regressed 481	
  

winter SAT anomaly patterns calculated from 22 CMIP5 models are shown in Figure 11. 482	
  

The observed patterns are well simulated by some models, such as the MIROC5 and 483	
  

MRI-CGCM3 for the EP ENSO and the NorESM1-M and HadGCM2-ES for the CP 484	
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ENSO. However, some models show an impact pattern that is almost opposite to that 485	
  

observed, such as HadCM3 for the CP ENSO and INMCM4 for the EP ENSO. To 486	
  

quantify how well the impact patterns are simulated, pattern correlation coefficients were 487	
  

calculated between the model regressed patterns and the NCEP regressed patterns. As 488	
  

shown in Figure 12a, there is a cluster of eleven CMIP5 models (CSIRO-Mk3-6-0, 489	
  

GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, HadGEM2-CC, HadGEM2-ES, IPSL-490	
  

CM5-MR, MIROC5, MPI-ESM-LR, MPI-ESM-P, NorESM1-M) that have higher pattern 491	
  

correlation coefficients for both the EP ENSO and the CP ENSO than the rest of the 492	
  

models. This group of the CMIP5 models is considered as the models whose regressed 493	
  

US winter temperature patterns are close to the observed patterns for the two types of 494	
  

ENSO. We also examine in Figure 12b the intensities of the simulated EP and CP ENSO 495	
  

events, which are determined using an EOF-regression method (Yu and Kim, 2010; Kim 496	
  

and Yu, 2012). Models with realistically strong events are identified using the lower limit 497	
  

of the 95% significance interval of the observed intensities (using an F-test) as the criteria 498	
  

(0.78˚C for EP and 0.51˚C for CP). Based on these criteria, ten of the 22 models simulate 499	
  

both EP and CP ENSO events with realistically strong intensities. Interestingly, nine of 500	
  

these models are also among the eleven models that realistically produce US winter 501	
  

temperature patterns for the two types of ENSO. Therefore, at least nine out of 22 models 502	
  

can more realistically produce the two types of ENSO with higher intensities and their 503	
  

different impacts on US winter temperatures: GFDL-CM3, GFDL-ESM2G, GFDL-504	
  

ESM2M, HadGEM2-CC, HadGEM2-ES, MIROC5, MPI-ESM-LR, MPI-ESM-P, and 505	
  

NorESM1-M). 506	
  

 507	
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C. ENSO warm/cold events asymmetry 508	
  

ENSO asymmetry refers to the fact that the two phases of ENSO are not mirror 509	
  

images of each other (Burgers and Stephenson, 1999). The asymmetry shows up in both 510	
  

the surface and subsurface fields (Rodgers et al., 2004; Schopf and Burgman, 2006; Sun 511	
  

and Zhang, 2006; Zhang et al., 2009). Causes for such an asymmetry are not yet clearly 512	
  

understood, but accumulating evidence suggests that it is likely a consequence of 513	
  

nonlinearity of ocean dynamics (Jin et al., 2003; Sun 2010, Liang et al., 2012). 514	
  

Asymmetry is also linked to the time-mean effect of ENSO (Sun and Zhang, 2006; 515	
  

Schopf and Burgman, 2006; Sun, 2010, Liang et al. 2012). Understanding the causes and 516	
  

consequences of ENSO asymmetry may hold the key to understanding decadal variability 517	
  

in the tropics and beyond (Rodgers et al., 2004; Sun and Yu, 2009, Liang et al., 2012). 518	
  

Figure 13 shows the sum of the SST anomalies between the warm and cold phases of 519	
  

ENSO from HadISST observations and CMIP5 models. The threshold value used for 520	
  

defining the warm and cold phase anomalies is set as +0.5 oC and -0.5 oC respectively. 521	
  

This sum has also been called the SST anomaly residual and has been a common measure 522	
  

of the ENSO asymmetry in the SST field. All models underestimate the observed positive 523	
  

SST residual (and therefore the asymmetry) over the eastern Pacific. Measured by the 524	
  

skewness of Niño3 SST anomalies (which is a more rigorous measure of asymmetry), all 525	
  

the models also underestimate the observed ENSO asymmetry (Figure 14). The figure 526	
  

also shows that the stronger variability of ENSO (measured by variance) does not 527	
  

guarantee a stronger asymmetry in ENSO (measured by skewness).  528	
  

ENSO asymmetry remains a common bias in climate models that has continued 529	
  

since CMIP3 (van Oldenborgh et al. 2005) with implications for simulating tropical 530	
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decadal variability. The causes are of current debate, but recent results indicate that it is 531	
  

related to the mean state and the excessive cold tongue in the models (De-Zheng Sun, 532	
  

personal communication, 2013), which was also noted in CMIP3 models (Sun et al., 533	
  

2012), although there is evidence that the mean state could in turn be determined by the 534	
  

statistics of ENSO via non-linearities in the system (Sun and Zhang 2006, Sun 2010, 535	
  

Liang et al. 2012, Sun et al. 2012, Ogata et al. 2012). On other hand, both the bias in the 536	
  

mean state and the bias in the asymmetry may be a consequence of a more fundamental 537	
  

reason: a weak thermal forcing relative to the dissipation (Sun, 2000; Liang et al. 2012). 538	
  

Together, these results suggest that the coupled tropical system in the models is in a 539	
  

different dynamical regime to reality (Sun and Bryan, 2010), also noted in terms of the 540	
  

elevation of the variance of ENSO over the past 50 years that is not represented by the 541	
  

models (Sun, 2010).  542	
  

 543	
  

5.2. Persistent droughts and wet spells over Great Plains and the southern-tier states  544	
  

Persistent dry and wet summers are features of the US Great Plains and southern 545	
  

US. We evaluate how the CMIP5 models describe the processes that cause such 546	
  

persistent anomalies in terms of low-level circulation and moisture flux anomalies by 547	
  

comparing with the NCEP-NCAR reanalysis. This complements the evaluations of the 548	
  

average seasonal circulation in the region, such as the low-level southerly jet as shown in 549	
  

part 1 of this paper (Sheffield et al., 2013). Persistent wet and dry summers are defined 550	
  

by JJA precipitation anomalies averaged over the Great Plains region from 90º-105ºW 551	
  

and 30º-50ºN during 1971-2000. Wet (dry) summers are identified as having normalized 552	
  

JJA precipitation larger (smaller) than 0.6 (-0.6) standard deviation. The reanalysis data 553	
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identify 8 wet and 7 dry summers in 1971-2000, and the models identify between 7 and 554	
  

12 wet or dry events, depending on the model. We show the composites of vertically 555	
  

integrated moisture from the surface to top of the troposphere, the 850hPa geopotential 556	
  

height, and near surface winds at 925hPa for the wet and dry summers and their 557	
  

differences for the reanalysis (Figure 15) and for a single model, CCSM4, as an example 558	
  

(Figure 16). 559	
  

Comparison of the two figures indicates some similarities but also very different 560	
  

processes causing the persistent wet or dry summers. The integrated moisture fluxes in 561	
  

both datasets indicate high moisture in an averaged cyclonic rotation in the troposphere in 562	
  

persistent wet summers (Figs. 15a and 16a) but anticyclonic rotation in dry summers 563	
  

(Figs. 15b and 16b) in the Great Plains. However, the sources of the moisture and the 564	
  

low-level dynamic structure are quite different. For the reanalysis, the convergence of 565	
  

moisture in the central Great Plains during wet summers results from southerly flow 566	
  

anomalies in the enhanced subtropical high pressure system in the North Atlantic and 567	
  

northerly flow anomalies in low pressure anomalies centered in the Midwest (Fig. 15d). 568	
  

These anomalies suggest a frontal system along the depression from the Midwest to the 569	
  

Southwest. A nearly reversed pattern of flow anomalies is shown during the dry summers 570	
  

(Figs. 15e and 15f). The model simulations show a different pattern of flow anomalies 571	
  

(Figs. 16d and e). In wet summers, the moisture is primarily from the east along the 572	
  

easterly and southeasterly quadrants of a high pressure anomaly center in the Great Lakes 573	
  

areas, instead of from the south as in the reanalysis result (Figs. 16a vs. 15a). In dry 574	
  

summers, the model shows dry flows from the Mexican plateau off the Sierra Madre 575	
  

Oriental in Mexico. These contrasts are shown in Fig. 16f. The other CMIP5 models also 576	
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simulate different tropospheric circulation patterns from those in the reanalysis for both 577	
  

wet and dry summers in the Great Plains.  578	
  

Although the integrated moisture fluxes in the models resemble those in the 579	
  

reanalysis estimates in wet and dry summers, the sources of moisture differ considerably, 580	
  

suggesting that the models are not correctly representing the mechanisms that force 581	
  

variability in the Great Plains. Controls on summertime Great Plains precipitation have 582	
  

been found to depend strongly on moisture transport from the Gulf of Mexico via the 583	
  

Great Plains low level jet (GPLLJ; e.g., Ruiz-Barradas and Nigam, 2006; Cook et al., 584	
  

2008; Weaver and Nigam, 2008) whose variability in turn may be related to remote SST 585	
  

forcing in the Pacific (e.g. Schubert et al., 2004; Ruiz-Barradas and Nigam, 2010, 586	
  

McCabe et al., 2008) and Atlantic (e.g. Enfield et al., 2001, Sutton and Hodson, 2005; 587	
  

McCabe et al., 2008) with contrasting anomalies in each basin associated with extreme 588	
  

conditions in the Great Plains (e.g., Hoerling and Kumar 2003; Schubert et al. 2009). 589	
  

Some of the models have shown improvement, compared to the CMIP3 models, in 590	
  

simulating the GPLLJ and the seasonal transitions (see Sheffield et al. 2013), a result 591	
  

largely attributable to the higher spatial resolution of CMIP5 models, but most models 592	
  

struggle to represent observed teleconnections between precipitation and Atlantic SSTs 593	
  

(see section 6). Even so, the transport of moisture transport is not the whole story and 594	
  

local dynamic processes (e.g. Veres and Hu, 2013), and land-atmosphere feedbacks 595	
  

(Ruiz-Barradas and Nigam, 2006), are important to initiate and further organize regional 596	
  

circulations that can transform the moisture into precipitation. Notably, previous studies 597	
  

focused on climate models find that they tend to over-estimate the role of recycled 598	
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precipitation over advected moisture (e.g. Ruiz-Barradas and Nigam, 2006) for the Great 599	
  

Plains with implications for the modeled precipitation variability. 600	
  

 601	
  

6. Decadal Variability 602	
  

 603	
  

6.1. Pacific Decadal Oscillation (PDO) and its influence on North American climate 604	
  

On interdecadal timescales, variability in the tropical and extratropical North 605	
  

Pacific, particularly that of the Pacific Decadal Oscillation (PDO), has significant 606	
  

physical and ecological impacts over North America (Mantua et al. 1997, Higgins et al. 607	
  

2000, Meehl et al. 2012). We examine the PDO and its relationships with N. American 608	
  

temperature and precipitation for 21 CMIP5 models. We define the PDO as the leading 609	
  

empirical orthogonal function of extended winter (November-April) monthly mean sea 610	
  

surface temperature (SST) anomalies in the North Pacific poleward of 20oN (Zhang et al., 611	
  

1997; Mantua et al., 1997) for 1900-1993, and subtract the monthly global mean SST. 612	
  

We then calculate the PDO index by projecting monthly North Pacific SST anomalies 613	
  

onto the PDO pattern for all available months and then standardizing the resulting time 614	
  

series. Figure 17 illustrates the PDO patterns in both observations and the CMIP5 615	
  

ensemble (see Table 5 for a list of models) obtained by regressing the unfiltered monthly 616	
  

SST anomalies onto the PDO index for all calendar months. As in the CMIP3 models 617	
  

(Oshima and Tanimoto, 2009; Furtado et al., 2011), the CMIP5 models reproduce the 618	
  

basic PDO horseshoe SST pattern. The most notable difference is the westward shift of 619	
  

the North Pacific center of action in models with respect to observations (Fig. 17c). The 620	
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regions with the largest differences also correspond with regions of relatively high inter-621	
  

model variability (Fig. 17d).  622	
  

For each set of seasonal temperature and precipitation regressions, we calculate 623	
  

the centered pattern correlations and RMS differences between the observed and CMIP5 624	
  

model regressions (Table 5), Despite fairly low pattern correlations in many cases, for 625	
  

most models and most seasons, the differences in the regression patterns are not 626	
  

statistically significant. This may be due to a combination of small effective sample size, 627	
  

large uncertainty in the regression coefficients, a relatively modest impact of the PDO on 628	
  

seasonal SAT and precipitation, and the ability of the models to capture the general PDO 629	
  

behavior during the winter and spring when the PDO impacts are strongest. In particular, 630	
  

the full ensemble performs well in capturing the winter and spring PDO SAT patterns, 631	
  

but substantial differences in the precipitation regressions are evident, particularly in 632	
  

spring.   633	
  

Figure 18 shows the DJF SAT and precipitation regressions in observations and 634	
  

the CMIP5 ensemble. The CMIP5 models do rather well in capturing the PDO influence 635	
  

on North American SAT, with positive (negative) SAT anomalies in northwest 636	
  

(southeast) North America during the positive phase of the PDO. Almost all local 637	
  

differences in the regression coefficients are not statistically significant. In contrast, the 638	
  

CMIP5 models perform somewhat poorly in reproducing the precipitation patterns over 639	
  

large parts of North America, although for high latitudes the observations are based on 640	
  

very sparse station data, and especially before the 1950s (Zhang et al., 2000). Both 641	
  

observations (Fig. 18b) and CMIP5 ensemble (Fig. 18d) produce a tripole pattern of 642	
  

precipitation anomalies over the west coast of North America. Large differences, 643	
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however, are found in eastern North America. In observations, the positive phase of the 644	
  

PDO is associated with reduced wintertime precipitation in the Tennessee and Ohio 645	
  

Valleys, northeastern U.S., and Southeastern Canada (Fig. 18b), but the CMIP5 ensemble 646	
  

fails to discern this influence (Fig. 18d, f). Though of smaller magnitude, significant 647	
  

differences also occur in central North America (Fig. 18f). In spring (MAM) the largest 648	
  

differences in the precipitation regressions occur along the coast of British Columbia, 649	
  

where observed regressions indicate positive anomalies but the CMIP5 ensemble 650	
  

produces a pronounced negative anomaly (not shown). Both observations and the CMIP5 651	
  

ensemble reproduce positive precipitation anomalies along the west coast and central 652	
  

plains of the U.S. 653	
  

 654	
  

6.2. Atlantic Multidecadal Oscillation (AMO) 655	
  

The Atlantic Multidecadal Oscillation (AMO) is an important mode of 656	
  

multidecadal climate variability manifesting in North Atlantic SSTs (e.g., Kerr 2000; 657	
  

Enfield et al. 2001). The AMO has significant regional and global climate associations, 658	
  

such as northeast Brazilian and Sahel rainfall (e.g., Folland et al. 1986; Rowell et al. 659	
  

1995; Wang et al. 2012), hurricane activity in the North Atlantic and the eastern North 660	
  

Pacific (Goldenberg et al. 2001; Wang and Lee 2009), and North American and European 661	
  

summer climate (Enfield et al. 2001; McCabe et al. 2004; Sutton and Hodson 2005). In 662	
  

spite of its importance, the mechanism of the AMO is still unclear. Several studies have 663	
  

indicated the role of variations in the Atlantic meridional overturning circulation 664	
  

(AMOC) and associated heat transport fluctuations (Delworth and Mann 2000; Knight et 665	
  

al. 2005). Some modeling studies indicate that solar variability and/or volcanoes are 666	
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important (Hansen et al. 2005; Ottera et al. 2010), or that aerosols can be a primary driver 667	
  

(Booth et al. 2012). A recent observational study shows that a positive feedback between 668	
  

SSTs and dust aerosols in the North Atlantic via Sahel rainfall variability may be a 669	
  

mechanism (Wang et al. 2012). 670	
  

The AMO index is defined as the detrended North Atlantic SST during the 671	
  

Atlantic hurricane season of June to November (JJASON) from the equator to 60°N, 672	
  

75°W-5°W with the 11-year running mean (e.g., Enfield et al. 2001; Knight et al. 2005). 673	
  

As shown in Figure 19a, the individual models show highly varying amplitudes and 674	
  

phases, with a large spread across models. This is to be expected given that the AMO is 675	
  

partly of internal origin. However, the potential influence of external forcings implies that 676	
  

the models may simulate some of the variation. All models show the warming in the last 677	
  

two decades when anthropogenic warming becomes influential. The MME mean tends to 678	
  

follow the main variations in the earlier part of the record, albeit subdued because of 679	
  

averaging across models, but fails to show the warm period during 1926-1965. Compared 680	
  

to the CMIP3 results (Medhaug and Furevik, 2011), the CMIP5 simulation of the AMO 681	
  

has generally improved, particularly after 1960. This may be due to higher resolution, 682	
  

improved parameterizations and the addition of time evolving land cover. Results for 683	
  

individual models (Table 6) indicate that the standard deviations are comparable to, or 684	
  

slightly weaker than, the observations with typical amplitudes ranging from 0.09 to 685	
  

0.19°C as compared to about 0.18°C in the observations, which is an improvement from 686	
  

CMIP3 models (Ting et al., 2009).  687	
  

The lagged autocorrelation of the AMO index for lags zero to 35 years (Fig. 19b) 688	
  

shows that the models generally represent the quasi-periodic nature of the observed 689	
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AMO, with the peak oscillation at 30-35 years in the observation, but generally shorter 690	
  

for the models. The persistence in the AMO index as defined as the maximum time lag 691	
  

when the autocorrelation first crosses the significance line at the 90% level, varies from 5 692	
  

to 25 years in the models, implying the potential for predicting future SSTs (Corti et al., 693	
  

2012; Kim et al., 2012). However, for most models the persistence is shorter (~12 years), 694	
  

which is nevertheless an improvement over CMIP3 models which have an average 695	
  

persistence of about 5 years (Medhaug and Furevik 2011). 696	
  

The ability of the models to represent the AMO and its impact on precipitation 697	
  

over North America is evaluated by regressing the AMO index on regional seasonal 698	
  

precipitation and SSTs for 1901-1999. The results are shown for autumn in Figure 20 and 699	
  

shown in more detail in Kavvada et al. (2013). The SST signature of the AMO is stronger 700	
  

in autumn than in summer and this is reflected in its impact on central US precipitation in 701	
  

observations (not shown). In both seasons the SST anomalies reach a maximum over the 702	
  

mid Atlantic, over the sub-polar gyre region. The warm phase of the AMO induces 703	
  

drying conditions over the central US and wet conditions over Florida and the US 704	
  

northeast in both seasons, but with more intensity in autumn. However, there are 705	
  

seasonally contrasting conditions along the Gulf of Mexico states where decreased 706	
  

precipitation occurs in summer but increased precipitation occurs in autumn.  707	
  

In general the models do not capture the SST seasonality of the AMO well. The 708	
  

simulated SST anomalies are generally larger in summer than in autumn in the majority 709	
  

of the models (not shown). While all models tend to place the maximum SST anomalies 710	
  

over the mid Atlantic Ocean, they do not replicate the observed maximum south of 711	
  

Greenland and its spatial structure. For example, CCSM4, GFDL-ESM and MIROC5 712	
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emphasize anomalies over the Norwegian Sea; and GFDL-ESM, GISS-E2-R and 713	
  

INMCM4 do not show a signal over the tropical Atlantic. The spatial correlation of the 714	
  

anomalies (Table 7) shows higher correlations for HadGEM2-ES and GISS-E2-R, 715	
  

although visually there are large discrepancies in the spatial patterns. 716	
  

The precipitation impact of the AMO is a bigger challenge for the models (see 717	
  

Table 7 for individual model spatial correlations for precipitation) and they generally fail 718	
  

to represent the drier conditions over the central US and the wet conditions along the 719	
  

coastal south Atlantic US states and southern Mexico. The initial drying over the south 720	
  

central US in summer is shown by a few models (BCC-CSM1.1, HadGEM2-ES, IPSL-721	
  

CM5A-LR and MRI-CGCM3) but the intensification of the drying into the autumn is not 722	
  

replicated by most of the models. The wet conditions over the south Atlantic US states in 723	
  

the autumn are captured by a few models, but to varying degrees of agreement and some 724	
  

models show regressions of the opposite sign (e.g. GISS-E2-R and HadGEM2-ES) and 725	
  

despite their high SST correlations. The increased precipitation over southern Mexico in 726	
  

autumn is shown only by a handful of models (e.g. BCC-CSM1.1, CSIRO-MK3.6, IPSL-727	
  

CM5A-LR and NorESM1-M).  728	
  

Numerous studies have shown the importance of the AMO in generating 729	
  

precipitation variability over the region (e.g. Enfield et al 2001, Sutton and Hodson 2005, 730	
  

Wang et al. 2006, Schubert et al. 2009, Nigam et al. 2011), with a key role played by the 731	
  

lower level circulation which modulates the Great Plains low-level jet and the 732	
  

convergence/divergence of moisture fluxes (see section 5.2). Thus, given the differences 733	
  

in the model simulated structure of the AMO SST footprint, their poor performance in the 734	
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simulation of the hydroclimate impact over the central US is not surprising - a situation 735	
  

which has not shown improvement since CMIP3 (Ruiz-Barradas et al. 2013). 736	
  

 737	
  

7. Multidecadal Trends 738	
  

 739	
  

7.1. Trends in Temperature and the ‘warming hole’ over the southeastern US  740	
  

A unique of feature of US temperature change during the 20th century is the so-741	
  

called “warming hole (WH)” observed in the southeastern US (Pan et al, 2004). While 742	
  

the globe has warmed over the 20th century, the WH region experienced cooling, 743	
  

especially in summer during the latter half of the century. Studies have attributed the 744	
  

mechanisms for this abnormal cooling (lack of warming) trend to large-scale decadal 745	
  

oscillations such as PDO and AMO (Robinson et al., 2002, Kunkel et al., 2006, Wang et 746	
  

al., 2009; Weaver, 2012; Meehl et al., 2012) and  to regional scale hydrological processes 747	
  

(Pan et al., 2004) and land surface interactions (Liang et at. 2007). Portmann et al. (2009) 748	
  

speculated that secondary organic aerosols during the growing season could contribute to 749	
  

the cooling in the WH region, while Christidis et al. (2010) emphasized the role of 750	
  

internal climate variability.  751	
  

 We evaluate whether the CMIP5 models show the warming hole as a forced 752	
  

response in Figure 21, which shows the annual and seasonal trends, in near surface air 753	
  

temperature from the observation and the CMIP5 multi-model mean from 17 models (see 754	
  

Figure 21 caption). Model and observation data are re-gridded to a common resolution 755	
  

2.5° × 2.5° using area averaging. Trends are calculated for the 1930-2004 period using 756	
  

the Theil-Sen approach (Theil, 1950; Sen, 1968). The choice of 1930-2004 gives a 757	
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prominent WH signal in the observations starting from the warmest decade following the 758	
  

Dust Bowl drought. Only one ensemble member from each model is included in the 759	
  

analysis as ensemble members from the same model show similar spatial patterns of 760	
  

long-term trends (Kumar et al., 2013). The MME mean neither shows a cooling trend in 761	
  

the eastern US, nor lesser warming relative to the western US. This indicates that, similar 762	
  

to CMIP3 (Kunkel et al. 2006) simulations, the CMIP5 simulations do not show the WH 763	
  

as a forced response signal. 764	
  

Figure 22 shows the temporal evolution of 30-year moving window annual 765	
  

temperature trends over the eastern US in the observational data and CMIP5 simulations, 766	
  

and relative to the western US. The multi-decadal persistence of the WH is clearly visible 767	
  

in the observational data i.e. most negative temperature trends are clustered between 1925 768	
  

and 1955. The 95% model spread range brackets the observed multi-decadal variability in 769	
  

the eastern US temperature trends and approximately 40% of the 95% model spread 770	
  

range is negative. The multi-model median captures the overall tendency of positive and 771	
  

negative trend evolution (r2 = 0.58). Pan et al. (2013) found that 19 out of 100 CMIP5 772	
  

historical ‘all forcings’ simulations showed negative temperature trends in the southeast 773	
  

USA; whereas simulations based on greenhouse gas emissions forcing only showed a 774	
  

strong warming in the central US. These results suggest that there is some fidelity with 775	
  

observations via external forcings, but natural climate variability plays a major role. 776	
  

Kumar et al. (2012) found that the 30 year running temperature trend variability in the 777	
  

eastern US is significantly correlated (r2 = 0.76) with the AMO and models that have 778	
  

relatively higher skill in AMO simulations also have a higher chance of reproducing the 779	
  

WH in the eastern United States. There is essentially no skill in the model’s 780	
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representation of the difference in trends between the eastern and western US running 781	
  

trends (Fig. 22b). 782	
  

 783	
  

7.2. Trends in Diurnal Temperature Range (DTR)  784	
  

Observed warming during the day and night has been asymmetric, with nocturnal 785	
  

minimum surface air temperature (Tmin) rising about twice as fast than daytime 786	
  

maximum temperature (Tmax) during the second half of 20th century, mostly during 787	
  

1950-1980 (Vose et al., 2005). Changes in cloud cover, atmospheric water vapor, soil 788	
  

moisture and other factors, account for 25-50% of the DTR reduction (Dai et al., 1999). 789	
  

Cloud cover, soil moisture, precipitation, and atmospheric/oceanic teleconnections 790	
  

account for up to 80% of regional variance over 1901-2002. Over the U.S., cloud cover 791	
  

alone accounts for up to 63% of regional annual DTR variability (Lauritsen and Rogers, 792	
  

2012). During 1950-2004, summer Tmax and Tmin over North America increased 0.07 793	
  

and 0.12 °C, respectively, resulting in a -0.05 °C decrease in DTR (Voss et al., 2005). A 794	
  

similar decrease (-0.06 °C) occurred in winter.  Over the WH region, summer Tmax 795	
  

decreased sharply (-0.13 oC) while Tmin increased slightly (0.05 °C), yielding a DTR 796	
  

decrease of 0.18 °C. Winter DTR also decreased by 0.13 °C. 797	
  

Figure 23 shows a comparison of DTR magnitude and the linear trend in DTR 798	
  

from 17 models against the CRU TS3.1 observational dataset. The observed mean DTR 799	
  

(Tmax-Tmin) is characterized by high values over the western high mountainous regions 800	
  

in summer and low values in high latitudes (Fig. 23a). The MME mean simulates this 801	
  

general pattern with under-estimation in the mountains. The observed DTR trend is 802	
  

predominantly negative in the U.S and Mexico and largely positive in Canada in both 803	
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seasons (Fig. 23b). The largest decreasing DTR trend up to 0.2oC per decade is over the 804	
  

southeastern U.S. warming hole region in summer. The model DTR trend is poorly 805	
  

reproduced, missing the extensive negative trend over the southeastern region where 806	
  

models simulated increasing DTR trend (Fig. 23b, right panels). The pattern correlation 807	
  

between the observed and simulated DTR is from 0.40 to 0.82, with a mean of 0.67 for 808	
  

the 17 models, but the correlation of DTR trend is much lower, ranging from 0.19 to -809	
  

0.26 (mean = 0.03). The model skill in simulating DTR trends does not appear to have 810	
  

improved from CMIP3 (Zhou et al., 2009) and earlier model comparisons (e.g. 811	
  

Branagnza et al., 2004), however, the role of anthropogenic forcings appears to be 812	
  

essential in producing a decline in DTR (Zhou et al., 2009), even if it is underestimated. 813	
  

 814	
  

7.3. Trends in Precipitation 815	
  

Precipitation has generally increased over North America in the last half of the 816	
  

20th century (Karl and Knight, 1998; Zhang et al., 2000). Trends in precipitation are 817	
  

positively correlated with streamflow trends, thereby affecting water resource availability 818	
  

and flood potential (Lettenmaier et al. 1994; McCabe and Wolock 2002, Kumar et al. 819	
  

2009). Figure 24 shows the multi-model ensemble average precipitation trend for 1930-820	
  

2004 from 17 models against the CRU observations. The multi-model average weakly 821	
  

captures the wetting trend in North America, particularly at higher latitudes. Note that the 822	
  

precipitation gauge density before the 1950s was very low, especially in high latitudes, 823	
  

and the observational trends are very uncertain, especially in high-latitudes, at least for 824	
  

the first part of the time period. However, the MME mean fails to capture the trend 825	
  

magnitude, for example, the higher wetting trend (>20 mm/decade) in the eastern US. 826	
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Figure 25 (a) and (b) show the 30 year running trend during the 20th century in the 827	
  

eastern and western US, respectively. The 95% model spread brackets the observed 828	
  

precipitation trend magnitude in both regions. The higher wetting trend in the 829	
  

observations has slowed down in the last decade in the eastern US. The muted magnitude 830	
  

of the trend in Figure 24 seems to be a result of low signal to noise ratio (the multi-model 831	
  

median line hovers around the zero line in Figure 25), rather than a robust feature of 832	
  

CMIP5 climate models. Some individual models capture very well the observed trend 833	
  

magnitude. Drying in Mexico is a dominant but incorrect feature in the CMIP5 834	
  

simulations, which is symptomatic of CMIP3 models also (IPCC, 2007) and is likely 835	
  

driven by the inadequate connection between increasing precipitation and global SST 836	
  

warming, at least for summer, in the majority of models as shown by Fu et al. (2012) for 837	
  

the southern US. 838	
  

 839	
  

8. Discussion and Conclusions 840	
  

This study has evaluated the simulated variability from the CMIP5 multi-model 841	
  

ensemble at intra-seasonal to multi-decadal time scales for North America and adjoining 842	
  

seas. The results show a mixture of performance, with some aspects of climate variability 843	
  

well reproduced (e.g. the spatial footprint of the PDO and its teleconnections), others 844	
  

reproduced well by some models but not others (e.g. ISV in the tropical Pacific; ENSO 845	
  

teleconnections and types) and others poorly by most models (e.g. tropical cyclone 846	
  

frequency; ENSO asymmetry; teleconnections with the AMO; long-term trends in DTR 847	
  

and precipitation). No one model stands out as better than the others, but certain models 848	
  

do perform much better for certain features. For example, the Hadley Center models do 849	
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well for the Central America mid-summer drought and the SST footprint of the AMO; the 850	
  

MRI-CGCM3 model does relatively well for intra-seasonal and inter-annual variability in 851	
  

the tropical Pacific and for tropical cyclone counts. In general, higher-resolution models 852	
  

do better for features such as tropical cyclones, but this does not appear to be a dominant 853	
  

factor for other aspects of climate variability. Furthermore, no model stands out as being 854	
  

particularly unskillful, bolstering the argument to consider all models irrespective of 855	
  

performance to encompass the uncertainties (Knutti, 2010). In fact, the range of processes 856	
  

and metrics analyzed is a key advantage of this study, because skill in one aspect does not 857	
  

necessarily mean good performance in another. For example, the NorESM1-1 model does 858	
  

very well at representing the two types of ENSO and its teleconnections, but does poorly 859	
  

at representing ENSO asymmetry. As a consequence, an overall ranking of models, albeit 860	
  

seemingly attractive, is difficult given the challenges in quantitatively comparing 861	
  

performance across different types of analysis, as well as the logistical challenges of 862	
  

sampling the same set of models across all analyses.  863	
  

For the climate features and models analyzed here, there does not appear to be a 864	
  

great deal of improvement since CMIP3. For example, CMIP5 models still cannot 865	
  

capture the seasonal timing of ENSO events, that tend to peak in the fall and winter, and 866	
  

the spurious drying signal in the southern US and Mexico continues from CMIP3. 867	
  

However, some features continue to be well simulated, such as the SST pattern of the 868	
  

PDO, and features related to spatial resolution are likely to have improved, such as the 869	
  

representation of TCs. Overall, the models are less able to capture observed variability 870	
  

and long-term trends than they are the mean climate state as evaluated in the first part of 871	
  

this paper (Sheffield et al., 2013), although this may be a result of model tuning to 872	
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observations (Räisänen, 2007). This is understandable for decadal to multi-decadal 873	
  

variability which is dependent on the models’ internal variability or the sensitivity to 874	
  

external forcing, for which the observations can be very uncertain. Some of the biases in 875	
  

variability, however, appear to be related to problems in simulating the mean state, and 876	
  

there are encouraging signs that improvements in the models, or at least the 877	
  

understanding of the sources of errors, can be made (e.g. biases in the depiction of the 878	
  

mean state of tropical Pacific may be linked to biases in the ISV, the lack of asymmetry 879	
  

in ENSO phases and to teleconnections with North American climate). 880	
  

The results have implications for the interpretation and robustness of the model 881	
  

projected future changes. The third part of this paper (Maloney et al., 2013) evaluates the 882	
  

model projections for a subset of the features analyzed in the first part of this paper 883	
  

(Sheffield et al., 2013) and this second part. As noted in the first part, the accurate 884	
  

simulation of historic climate features is not sufficient for credible projections, although 885	
  

the depiction of large-scale climate features is necessary. Several studies of future 886	
  

projections show only small differences between models that do better at replicating 887	
  

observations and those that do worse (e.g. Brekke et al., 2008; Knutti et al., 2010) whilst 888	
  

others have found relationships between model performance and future projections that 889	
  

can be related to physical processes (e.g. Hall and Qu, 2006; Boe et al, 2009). However, 890	
  

these types of studies are generally specific to certain climate features that do not 891	
  

necessarily provide confidence or pessimism in model skill in a broader sense.  892	
  

The adequate depiction of the variability is nevertheless necessary because this is 893	
  

generally associated with the more extreme aspects of climate that impose the largest 894	
  

impacts. Furthermore, the depiction of the teleconnections associated with large-scale 895	
  



	
   40 

variability is especially important because the impacts of potential changes in the 896	
  

variability of, say, ENSO (Van Oldenborgh et al., 2005; Muller and Roeckner, 2008) are 897	
  

subject to uncertainties in the representation of teleconnections (Maloney et al., 2013). 898	
  

Model variability can also have a large impact on future changes because the signal to 899	
  

noise ratio can be highly dependent on the model’s natural variability resulting in 900	
  

misleading assessments of future changes and uncertainties across models (Tebaldi et al., 901	
  

2011). The ability of the models to reproduce the observed trends may be a better 902	
  

indicator of model reliability than depiction of the mean climate or even its variability, 903	
  

because this indicates the model’s sensitivity to an external forcing that may continue 904	
  

into the future, such as greenhouse gas concentrations. The problem here is that the trend 905	
  

analyzed is subject to uncertainties in the observations, the complications of natural 906	
  

variability in the real world and models, and uncertainties in feedbacks and how they may 907	
  

change in the future (Räisänen, 2007; Knutti, 2010). The generally poor ability of the 908	
  

models to reproduce the trends in precipitation, DTR and some features of regional 909	
  

temperature shown here are indicative of this. 910	
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Figure Captions 1449	
  

Figure 1. Taylor diagram for summer mean (May-September) rainfall over the eastern 1450	
  
Pacific (150oW-80oW; 5oS-30oN) simulated in CMIP5 GCMs. The rainfall observations 1451	
  
are based on TMPA data. 1452	
  
 1453	
  
Figure 2. Spatial distribution of amplitude (a) and phase (b) of the first leading complex 1454	
  
EOF (CEOF1) mode based on 30-90-day band-pass filtered TRMM rainfall during boreal 1455	
  
summer (June-September) over the eastern Pacific. To make the spatial phase patterns of 1456	
  
the CEOF1 based on the observations and simulations comparable to each other, the 1457	
  
spatial phase of CEOF1 for each dataset is adjusted by setting the domain averaged value 1458	
  
to be zero over a small box region of 110oW-100oW, 10-15oN. Contours are only 1459	
  
displayed where the local variance explained by CEOF1 exceeds 8%; (c): X-axis: Pattern 1460	
  
correlation coefficients of the CEOF1 mode between TRMM observations and CMIP5 1461	
  
GCM simulations. Y-axis: Relative amplitudes of CEOF1 in model simulations to their 1462	
  
observed counterparts. Both pattern correlations and amplitudes are derived by averaging 1463	
  
over the area of 5oN-25oN, 140oW-80oW where the active ISV is observed. The black 1464	
  
“star” mark represents the TMPA observations. 1465	
  
 1466	
  
Figure 3. Summertime (June-September) MSD strength (mm/day) for three observational 1467	
  
estimates (TRMM 3B43, UNAM and GPCP) and the CMIP5 MME mean for 23 models 1468	
  
(see Table 3). Also shown (bottom row) are the MME standard deviation and histogram 1469	
  
of the pattern correlations between individual models and the MME mean. All model 1470	
  
output and observational data were regridded onto a common 0.5° grid. 1471	
  
 1472	
  
Figure 4. Storm track density (top) and mean strength (bottom) for ERA Interim and 1473	
  
seven CMIP5 models (CanESM2, CCSM4, GFDL-ESM2M, HadGEM2-ES, MIROC5, 1474	
  
MPI-ESM-L and MRI-CGCM3). Tracks are based on 6-hourly 850hPa relative vorticity 1475	
  
smoothed to T42 spatial resolution to better capture the synoptic features of the vorticity 1476	
  
field. 1477	
  

Figure 5. Tracks of tropical cyclone-like storms in the CMIP5 historical runs in the 1478	
  
period 1950-2005 (GFDL-ESM2M (1 ensemble member), HadGEM2 (1), MPI-ESM-LR 1479	
  
(3), MRI CGCM3 (5) and MIROC5 (1) models) and in observations for the same period. 1480	
  
The number of storms in each case is given in the bottom right corner of each panel. One 1481	
  
ensemble member is used for each model.  1482	
  

Figure 6. Mean number of TCs per month in models (GFDL-ESM2M, HadGEM2-ES (in 1483	
  
the figure HGEM2), MPI-ESM-LR, MRI-CGCM3, MIROC5) and observations in the 1484	
  
North Atlantic (top left panel) and eastern North Pacific (top right panel), using only 1485	
  
ensemble 1 for MRI-CGCM3. Number of TCs per year in the period 1950-2005 in 1486	
  
models and observations for the North Atlantic (bottom left panel) and eastern North 1487	
  
Pacific (bottom right panel). The blue box shows the 25-75 percentile range, with the 1488	
  
median shown as a red line. The whiskers and red crosses show the data outside of 1489	
  
middle quartiles. 1490	
  

Figure 7. Upper panels: Comparison of observed and C180HIRAM (one realization) 1491	
  



	
   68 

simulated hurricane tracks for the N. Atlantic and E. Pacific for 1981-2008. Middle 1492	
  
panel: Comparison of observed and C180HIRAM simulated annual hurricane count 1493	
  
statistics. Blue boxes show the 25-75 percentile range, with the median shown as a red 1494	
  
line and the mean shown as a red star. The whiskers show the maximum and minimum 1495	
  
values. The annual statistics are computed based on a 3-member ensemble mean for 1496	
  
1981-2008. Lower panels: Observed and model simulated seasonal cycle (number of 1497	
  
hurricanes per month) for the N. Atlantic and E. Pacific from the 3-member ensemble 1498	
  
mean (1=JAN, 12=DEC). 1499	
  
 1500	
  
Figure 8. Taylor diagrams for (a) El Niño and (b) La Niña composite 300 hPa 1501	
  
geopotential patterns over the region from East Asia – North America. Higher 1502	
  
performance (pattern correlation > 0.6, RMS difference < 13m in both (a) and (b)) 1503	
  
models are indicated in red, whereas lower performance models are indicated in blue.  In 1504	
  
(a) HadCM3, which falls outside of the plot, has a pattern correlation of -0.3 and RMS 1505	
  
difference of 17.6 m. The points labeled “ens” in red, blue, and green represent the higher 1506	
  
performance, lower performance, and total ensemble, respectively. The composites are 1507	
  
normalized by the Niño 3.4 SST amplitude to focus on pattern differences independent of 1508	
  
ENSO amplitude differences. The observational reference is based on the NCEP/NCAR 1509	
  
reanalysis for 1950-2010, whereas the CMIP calculations are based on the full historical 1510	
  
period (1850-2005) for one run of each model.	
  1511	
  

Figure 9. Composites of (a,b,c) 300 hPa height (z300, m), (d,e,f) near surface air 1512	
  
temperature (SAT, ᵒC), (g,h,i) precipitation (Precip, mm/day), and (j,k,l) SST (ᵒC) 1513	
  
anomalies during DJF El Niño episodes in observations (left column), and both high 1514	
  
(middle column) and low performance CMIP5 ensembles (right column) described in 1515	
  
Fig. 8. The observational SAT and precipitation composites are based on the CRU TS3.1 1516	
  
land near-surface temperature and precipitation datasets for 1901-2009. The z300, SAT, 1517	
  
and Precip composites are normalized by the Niño 3.4 SST anomaly. Stippling in the 1518	
  
observed (a) z300, (d) SAT, and (g) precipitation composites indicates anomalies that are 1519	
  
statistically significant at the 5% level. 1520	
  

Figure 10. Composite DJF El Niño (a) precipitation (mm/day) and (b) SST (ᵒC) 1521	
  
difference between the high and low performance CMIP5 ensemble described in Fig. 8.  1522	
  
Stippling indicates differences that are statistically significant at the 5% level. (c) DJF 1523	
  
SST climatology difference (ᵒC) between the high and low performance ensemble, and 1524	
  
(d) high and (e) low performance SST climatology bias (ᵒC) for the 1951-2000 period.	
  1525	
  

Figure 11. US winter surface air temperature regressed on the EP (top six rows) and CP 1526	
  
(bottom six rows) ENSO indices from observations and the CMIP5 models. 1527	
  
Observational air temperature data are from the NCEP-NCAR reanalysis and SSTs are 1528	
  
from the ERSST dataset for 1950-2010. 1529	
  

Figure 12. (a) Scatter plot of pattern correlations between the regression patterns from 1530	
  
the CMIP5 models and those from the observations (NCEP-NCAR reanalysis and 1531	
  
HadISST dataset) for EP versus CP ENSO; (b) Scatter plot of the intensities of the EP/CP 1532	
  
ENSO from the CMIP5 models and the observation (ERSST). The values shown are the 1533	
  
maximum standard deviations of the EOF patterns of the two types of the ENSO 1534	
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calculated using a regression-EOF method. The blue dashed lines indicate the lower limit 1535	
  
of the 95% significance interval of the observed ENSO intensities based on an F-test. 1536	
  
 1537	
  
Figure 13. The sum of the composite SST anomalies between the two phases of ENSO 1538	
  
from the HadISST observations and CMIP5 coupled models. The definition of the warm 1539	
  
phase and cold phase of ENSO follows that of Zhang et al. (2009). The length of data 1540	
  
used in the calculation is 50 years for all the models and observations (1950-99). 1541	
  

Figure 14. The standard deviation (upper panel) and skewness (lower panel) of monthly 1542	
  
Niño-3 SST anomalies from observations and CMIP5 model simulations. The length of 1543	
  
data for computing the standard deviation and skewness is 50 years for the observations 1544	
  
(1950–99). For the model, the standard deviation and skewness were calculated for a 50-1545	
  
year moving window over 100 years of the model run for a total of 601 samples. The 1546	
  
figure shows the mean of the samples and +- the standard deviation across the samples. 1547	
  
Data used are the same as for Figure 13. 1548	
  

Figure 15. Summertime wet and dry circulation patterns for the central US from the 1549	
  
NCEP/NCAR reanalysis. a) and b) show, respectively, summertime precipitation 1550	
  
anomalies (contours) in wet and dry years, in reference to the Great Plains precipitation, 1551	
  
and the vertically integrated moisture fluxes from the surface to the top of the troposphere 1552	
  
(arrows).  c) The differences between a) and b). d) and e) show the corresponding 850hPa 1553	
  
geopotential height (countour) and 925hPa wind anomalies (arrows) for the wet and dry 1554	
  
summer, respectively. Their differences are summerized in f).  1555	
  

Figure 16. Same as Fig. 15 but for CCSM4 simulation results. 1556	
  

Figure 17. PDO SST patterns in observations and CMIP5 models. Linear regression of 1557	
  
SST on the PDO index in (a) observations and (b) the CMIP5 ensemble, and (c) the 1558	
  
CMIP5 minus observed PDO regression. Observations are from the HadISST dataset for 1559	
  
the period between 1870 and 2009. For the CMIP5 models, the analysis period begins as 1560	
  
early as 1850 and extends to 2005, and a single realization is used for each model. The 1561	
  
contour interval is 0.2ᵒC in (a) and (b) and 0.1ᵒC in (c), with the zero contour omitted.  1562	
  
Stippling in (c) indicates where the differences are statistically significant at the 95% 1563	
  
significance level based on a two-sided t-test. (d) Standard deviation of the PDO SST 1564	
  
regressions within the ensemble.  Contour interval is 0.05ᵒC. 1565	
  

Figure 18. December-February PDO SAT and precipitation regression patterns over 1566	
  
North America. Regressions of DJF SAT (a,c) and precipitation (b,d) on the PDO index 1567	
  
in (a,b) observations and (c,d) the CMIP5 ensemble. The differences between the 1568	
  
regression patterns (CMIP5 minus observations) are shown in (e) and (f). The contour 1569	
  
interval is 0.1ᵒC for the SAT regressions (a, c, e) and 0.05 mm/day for the precipitation 1570	
  
regressions (b,d,f). Stippling in (e) and (f) correspond to differences that are significantly 1571	
  
different at the 95% confidence level based on a two-sided t-test. To focus on 1572	
  
multidecadal variability a Butterworth 10-year low-pass filter is applied to each PDO 1573	
  
index time series, which is then re-standardized and detrended. The SAT and 1574	
  
precipitation anomalies are then regressed on the filtered index for each season. The 1575	
  
observations are the CRU TS3.1 temperature and precipitation datasets.  1576	
  
 1577	
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Figure 19. The JJASON AMO index in CMIP5 models compared to observations for (a) 1578	
  
the time series and (b) autocorrelations. The AMO index is defined as the the 11-year 1579	
  
running mean of the detrended North Atlantic SST during the Atlantic hurricane season 1580	
  
of June to November (JJASON) from the equator to 60°N, 75°W-5°W. SST observations 1581	
  
are from the ERSST dataset.  1582	
  
 1583	
  
Figure 20. Autumn (SON) regressions of the AMO index on SST and precipitation from 1584	
  
observations (HadISSTv1.1 and CRU TS3.1), and 17 CMIP5 models for 1901-1999. The 1585	
  
AMO index is the area-averaged SST anomalies over the domain (75°-5°W, 0°-60°N), 1586	
  
which are detrended and then smoothed via a 11-year running mean. Regressions are 1587	
  
calculated for the first ensemble member for each model; observed and simulated 1588	
  
anomalies have been regridded to a 1.5°×1.5° grid for precipitation, and a 5°×2.5° grid 1589	
  
for SST. Blue/red shading denotes negative/positive SST anomalies, while brown/green 1590	
  
shading denotes negative/positive precipitation anomalies. Contour interval is 0.1K and 1591	
  
0.02 mm day-1, respectively. 1592	
  

Figure 21. Observed and MME mean temperature trends (°C/decade) for North America 1593	
  
(1930-2004) for (a) annual, (b) summer, and (c) winter. Observations are from the CRU 1594	
  
TS3.1 dataset. The MME mean is calculated from the first ensemble member of 17 1595	
  
models (BCC-CSM1.1, CanESM2, CCSM4, CNRM-CM5, CSIRO-Mk3-6-0, GFDL-1596	
  
CM3, GFDL-ESM2M, GISS-E2-R, HadCM3, HadGEM2-ES, INMCM4, IPSL-CM5A-1597	
  
LR, MIROC5, MIROC-ESM, MPI-ESM-LR, MRI-CGCM3, NorESM1-M). Eastern and 1598	
  
western US regions are shown by the boxes. 1599	
  
 1600	
  
Figure 22: 30-year running annual temperature trend for (a) the Eastern US, (b) 1601	
  
difference in trend between the Eastern and Western US. Regions are defined in Fig. 21. 1602	
  
Shading represents the 95% uncertainty range calculated from 17 models (see Fig. 21), 1603	
  
one ensemble member from each model. Black solid line is the observation (CRU TS3.1) 1604	
  
and blue solid line is the MME median. X-axis represents the start of the 30-year running 1605	
  
period. For example, the trend value at 1930 represents the trend from 1930 to 1959.  1606	
  

Figure 23. Comparison of (a) mean DTR and (b) DTR trend for the obsevrations (CRU 1607	
  
TS3.1) and MME mean of the 17 models (right; see Fig. 21) for 1951-2000. The contour 1608	
  
lines are the inter-model standard deviation.  1609	
  
 1610	
  
Figure 24. Observed and MME mean annual precipitation trends (mm/decade) for North 1611	
  
America (1930-2004). Observations are from the CRU TS3.1 dataset. The MME mean is 1612	
  
from 17 models (see Fig. 21), 1 ensemble member from each model. Eastern and western 1613	
  
US regions are shown by the boxes. 1614	
  

Figure 25. 30-year running annual precipitation trend (mm/decade) for (a) the Eastern 1615	
  
US, and (b) the Western US. Regions are shown in Fig. 23. The shaded region is the 95% 1616	
  
uncertainty range calculated from 17 models (see Fig. 21), one ensemble member from 1617	
  
each model. Black solid line is the observation (CRU TS3.1) and blue solid line is the 1618	
  
MME median. X-axis represents the start of the 30-year running period. For example, the 1619	
  
trend value at 1930 represents the trend from 1930 to 1959. 1620	
  

 1621	
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Tables 1622	
  

Table 1. CMIP5 models evaluated and their attributes. 1623	
  

Model	
   Center	
   Atmospheric 
Horizontal 
Resolution 
(lon.  x lat.)	
  

Number 
of model 

levels	
  

Reference	
  

ACCESS1-0	
   Commonwealth Scientific and 
Industrial Research 
Organization/Bureau of 
Meteorology, Australia	
  

1.875 x 1.25	
   38	
   Bi et al. 
(2012)	
  

BCC-CSM1.1	
   Beijing Climate Center, China 
Meteorological Administration, 
China	
  

2.8 x 2.8   	
   26	
   Xin et al. 
(2012)	
  

CanCM4	
   Canadian Centre for Climate 
Modelling and Analysis, Canada	
  

2.8 x 2.8	
   35	
   Merryfield 
et al. 
(2012)	
  

CanESM2	
   Canadian Center for Climate 
Modeling and Analysis, Canada	
  

2.8 x 2.8   	
   35	
   Arora et al. 
(2011)	
  

CCSM4	
   National Center for Atmospheric 
Research, USA	
  

1.25 x 0.94	
   26	
   Gent et al. 
(2011)	
  

CESM1-
CAM5-1-FV2 

Community Earth System 
Model Contributors (NSF-DOE-	
  
NCAR) 

1.4 x 1.4	
   26	
   Gent et al. 
(2011)	
  

CNRM-
CM5.1	
  

National Centre for 
Meteorological Research, France	
  

1.4 x 1.4	
   31	
   Voldoire et 
al. (2011)	
  

CSIRO-
MK3.6	
  

Commonwealth Scientific and 
Industrial Research 
Organization/Queensland 
Climate Change Centre of 
Excellence, AUS	
  

1.8 x 1.8	
   18	
   Rotstayn et 
al. (2010)	
  

EC-EARTH	
   EC-EARTH consortium	
   1.125 x 1.12	
   62	
   Hazeleger 
et al. 
(2010)	
  

FGOALS-
S2.0	
  

LASG, Institute of Atmospheric 
Physics, Chinese Academy of 
Sciences	
  

2.8 x 1.6	
   26	
   Bao et al. 
(2012)	
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GFDL-CM3	
   NOAA Geophysical Fluid 
Dynamics Laboratory, USA	
  

2.5 x 2.0	
   48	
   Donner et 
al. (2011)	
  

GFDL-
ESM2G/M	
  

NOAA Geophysical Fluid 
Dynamics Laboratory, USA	
  

2.5 x 2.0	
   48	
   Donner et 
al. (2011)	
  

GISS-E2-H/R	
   NASA Goddard Institute for 
Space Studies, USA	
  

2.5 x 2.0	
   40	
   Kim et al. 
(2012)	
  

HadCM3	
   Met Office Hadley Centre, UK	
   3.75 x 2.5	
   19	
   Collins et 
al. (2001)	
  

HADGEM2-
CC 
(Chemistry 
coupled)	
  

Met Office Hadley Centre, UK	
   1.875 x 1.25	
   60	
   Jones et al. 
(2011)	
  

HadGEM2-
ES	
  

Met Office Hadley Centre, UK	
   1.875 x 1.25	
   60	
   Jones et al. 
(2011)	
  

INMCM4	
   Institute for Numerical 
Mathematics, Russia	
  

2 x 1.5	
   21	
   Volodin et 
al. (2010)	
  

IPSL-CM5A-
LR	
  

Institut Pierre Simon Laplace, 
France	
  

3.75 x 1.8	
   39	
   Dufresne et 
al. (2012)	
  

IPSL-CM5A-
MR	
  

Institut Pierre Simon Laplace, 
France	
  

2.5 x 1.25	
   39	
   Dufresne 
et al. 
(2012)	
  

MIROC4h	
   Atmosphere and Ocean 
Research Institute (The 
University of Tokyo), National 
Institute for Environmental 
Studies, and Japan Agency for 
Marine-Earth Science and 
Technology, Japan	
  

0.56 x 0.56	
   56	
   Sakamoto 
et al. 
(2012)	
  

MIROC5	
   Atmosphere and Ocean Research 
Institute (The University of 
Tokyo), National Institute for 
Environmental Studies, and 
Japan Agency for Marine-Earth 
Science and Technology, Japan	
  

1.4 x 1.4	
   40	
   Watanabe 
et al. 
(2010)	
  

MIROC-
ESM	
  

Japan Agency for Marine-Earth 
Science and Technology, 
Atmosphere and Ocean 
Research Institute (The 

2.8 x 2.8	
   80	
   Watanabe 
et al. 
(2010)	
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University of Tokyo), and 
National Institute for 
Environmental Studies	
  

MIROC-
ESM-CHEM	
  

Japan Agency for Marine-Earth 
Science and Technology, 
Atmosphere and Ocean 
Research Institute (The 
University of Tokyo), and 
National Institute for 
Environmental Studies	
  

2.8 x 2.8	
   80	
   Watanabe 
et al. 
(2010)	
  

MPI-ESM-
LR	
  

Max Planch Institute for 
Meteorology, Germany	
  

1.9 x 1.9	
   47	
   Zanchettin 
et al. (2012)	
  

MRI-CGCM3	
   Meteorological Research 
Institute, Japan	
  

1.1 x 1.1	
   48	
   Yukimoto 
et al. 
(2011)	
  

NorESM1-M	
   Norwegian Climate Center, 
Norway	
  

2.5 x 1.9	
   26	
   Zhang et al. 
(2012)	
  

	
  1624	
  

1625	
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Table 2. Observational and reanalysis datasets used in the evaluations.  1625	
  

Dataset	
   Type	
   Spatial Domain	
   Temporal Domain	
   Reference	
  
Precipitation	
  

TMPA 3B42 V6	
   Satellite	
   0.25 deg, 50S-
50N	
  

3-hourly/monthly, 
1998-2010	
  

Huffman et 
al. (2007)	
  

CRU TS3.1	
   Gauge	
   0.5 deg, global 
land	
  

Monthly, 1901-2008	
   Mitchell et 
al. (2005)	
  

CPC unified	
   Gauge	
   0.5 deg, US	
   Daily, 1948-2010	
   Xie et al. 
(2010)	
  

GPCP v2.1 Gauge/satellite 1.0 deg, global 1979-2009 Adler et al. 
(2003) 

UNAM v0705 Gauge 0.5 deg, Mexico 
and surroundings 

1901-2002 UNAM 
(2007) 

Temperature	
  
CRU TS3.1	
   Gauge	
   0.5 deg, global 

land	
  
Monthly, 1901-2008	
   Mitchell et 

al. (2005)	
  
Sea Surface Temperature	
  

HadISST	
   In situ/satellie	
   Global Oceans, 
1.0 deg	
  

Monthly, 1870-present	
   Rayner et al. 
(2003)	
  

ERSSTv3b	
   In situ	
   Global Oceans, 
2.0 deg	
  

Monthly, 1854-present	
   Smith et al. 
(2008)	
  

Reanalyses	
  
NCEP-NCAR	
   Model reanalysis	
   ~1.9 deg, global	
   6-hourly, 1948-present	
   Kalnay et al. 

(1996)	
  
NCEP-DOE	
   Model reanalysis	
   ~1.9 deg, global	
   6-hourly, 1979-present	
   Kanamitsu 

et al. (2002)	
  
20CR	
   Model reanalysis	
   ~0.3 deg, global	
   6-hourly, 1871-present	
   Compo et 

al. (2011)	
  
ERA-interim	
   Model reanalysis	
   1.5 deg, global	
   6-hourly, 1979-present	
   Dee et al. 

(2011) 
Storm Tracks	
  

National 
Hurricane Center 
best track tropical 
cyclone data	
  

In-situ/satellite	
   Storm tracks, 
Eastern N. Pacific 
and N. Atlantic	
  

6-hourly, 1851-present 
(Atlantic), 1949-
present (eastern N. 
Pacific)	
  

Jarvinen et 
al. (1984)	
  

IBTrACS	
   Best track 
datasets from 
various agencies	
  

Storm tracks, 
global oceans	
  

6-hourly, 1842-2010	
   Knapp et 
al. (2010)	
  

	
  1626	
  

1627	
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Table 3. Spatial correlation of the MSD between the CMIP5 models and the MME mean, 1627	
  
calculated for 1850-2005 . 1628	
  

Model R 
BCC-CSM1-1 0.45 
CanCM4 0.37 
CanESM2 0.42 
CCSM4 0.17 
CNRM-CM5 0.49 
CSIRO-Mk3-6-0 0.51 
GFDL-CM3 0.29 
GFDL-ESM2G 0.48 
GFDL-ESM2M 0.27 
GISS-E2-H 0.35 
GISS-E2-R 0.34 
HadCM3 0.75 
HadGEM2-CC 0.79 
HadGEM2-ES 0.81 
INMCM4 0.14 
IPSL-CM5A-LR 0.40 
IPSL-CM5A-MR 0.34 
MIROC5 0.71 
MIROC-ESM -0.04 
MIROC-ESM-CHEM -0.04 
MPI-ESM-LR 0.61 
MRI-CGCM3 0.33 
NorESM1-M 0.14 
 1629	
  

1630	
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Table 4. Spatial correlations of model fields with ERA-Interim for the months indicated 1630	
  
and for 1979-2005. Correlations of the 850 hPa wind components and geopotential height 1631	
  
have been combined into one index R_ZUV850, while 850 hPa track density and strength 1632	
  
correlations have been combined into a second index R_TRK850 to simplify the 1633	
  
comparisons. Values in bold are the upper 25th percentile of the nine models shown. 1634	
  

 1635	
  

 

 

May-Oct 

R_ZUV850 

May-Nov 

R_TRK850 

BCC-CSM1.1 0.76 0.69  

CanESM2 0.83 0.63  

CCSM4 0.77 0.57  

CNRM-CM5 0.90 0.84 

GFDL-ESM2M 0.75 0.77  

HadGEM2-ES 0.85 0.90  

MIROC5 0.82 0.86  

MPI-ESM-LR 0.82 0.85  

MRI-CGCM3 0.79 0.86  

75th Percentile 0.83 0.86 

	
  1636	
  

 1637	
  
1638	
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Table 5. Error statistics for the CMIP5 PDO regressions on North American seasonal 1638	
  
SAT and temperature. Pattern correlations lie above the RMS difference (ºC for SAT, 1639	
  
mm/day for precipitation). Regression differences at each grid point are evaluated with a 1640	
  
two-sided t-test, for which the effective degrees of freedom are adjusted for the lag-1 1641	
  
autocorrelation in the residuals, as in Santer et al. (2000). Bold indicates regression 1642	
  
pattern differences that are statistically significant at the 5% level based on a false 1643	
  
discovery rate field significance test (Wilks, 2006).  1644	
  

Model DJF 
SAT 

DJF 
Precip. 

MAM 
SAT 

MAM 
Precip. 

JJA 
SAT 

JJA 
Precip. 

SON 
SAT 

SON 
Precip. 

BCC-CSM1.1 0.90 
0.18 

0.33 
0.07 

0.67 
0.12 

0.20 
0.05 

0.48 
0.08 

0.07 
0.10 

0.05 
0.16 

0.06 
0.07 

CanESM2 0.63 
0.19 

0.31 
0.06 

0.76 
0.10 

0.24 
0.05 

0.45 
0.07 

0.04 
0.06 

-0.11 
0.12 

-0.07 
0.07 

CCSM4 0.85 
0.16 

0.44 
0.06 

0.69 
0.20 

0.23 
0.06 

0.29 
0.09 

-0.15 
0.08 

0.10 
0.29 

0.11 
0.10 

CNRM-CM5 0.54 
0.22 

0.30 
0.07 

0.64 
0.18 

0.20 
0.06 

0.31 
0.11 

-0.04 
0.07 

0.44 
0.09 

-0.02 
0.08 

CSIRO-Mk3.6.0 0.70 
0.19 

0.11 
0.07 

0.51 
0.20 

-0.05 
0.11 

0.31 

0.14 
-0.01 
0.19 

0.30 
0.18 

0.16 
0.12 

FGOALS-s2 0.72 
0.16 

0.02 
0.08 

0.41 
0.15 

0.09 
0.06 

0.26 
0.10 

0.00 
0.06 

0.34 
0.14 

-0.08 
0.07 

GFDL-CM3 0.53 
0.20 

0.24 
0.07 

0.19 

0.18 
-0.11 
0.06 

0.22 
0.10 

0.01 
0.06 

0.19 
0.14 

0.10 
0.06 

GFDL-ESM-2G 0.82 
0.25 

0.06 
0.07 

0.53 
0.23 

-0.01 
0.07 

0.28 
0.12 

-0.06 
0.09 

0.28 
0.18 

0.14 
0.09 

GFDL-ESM-2M 0.52 

0.30 
0.26 
0.08 

0.22 
0.22 

-0.17 
0.08 

0.35 
0.11 

0.03 
0.11 

0.01 
0.14 

0.07 
0.09 

GISS-E2-R 0.70 
0.17 

0.41 
0.06 

0.57 
0.16 

0.18 
0.06 

0.04 

0.12 
-0.04 
0.10 

0.11 
0.11 

-0.04 
0.08 

HadGEM2-CC 0.76 
0.16 

0.52 
0.06 

0.55 
0.20 

0.26 
0.06 

0.37 
0.11 

-0.03 
0.08 

0.42 
0.09 

0.19 
0.06 

HadGEM2-ES 0.39 
0.22 

0.20 
0.08 

0.62 
0.19 

0.10 
0.07 

0.26 
0.09 

-0.09 
0.11 

0.07 
0.12 

0.08 
0.09 

HadCM3 0.73 
0.20 

0.30 
0.07 

0.75 
0.13 

0.28 
0.05 

0.21 
0.11 

0.04 
0.08 

0.27 
0.14 

0.20 
0.08 

INM-CM4 0.15 
0.25 

0.13 
0.07 

0.14 
0.19 

-0.14 
0.07 

0.05 
0.10 

-0.02 
0.07 

0.20 
0.09 

0.05 
0.06 

IPSL-CM5A-LR 0.87 
0.15 

0.21 
0.09 

0.40 
0.23 

-0.13 
0.08 

0.14 
0.10 

-0.14 
0.07 

0.19 
0.13 

0.09 
0.07 

IPSL-CM5A-MR 0.74 
0.17 

0.18 
0.09 

0.42 
0.17 

-0.09 
0.07 

0.11 
0.10 

-0.10 
0.07 

0.42 
0.11 

-0.06 
0.07 

MIROC5 0.65 
0.19 

0.23 
0.11 

0.69 
0.14 

0.26 
0.06 

0.29 
0.10 

0.00 
0.08 

0.05 
0.15 

-0.02 
0.09 

MIROC-ESM 0.48 
0.21 

-0.07 
0.07 

0.13 
0.17 

-0.22 
0.06 

0.33 
0.07 

-0.11 
0.06 

0.31 
0.09 

0.05 
0.06 

MPI-ESM-LR 0.77 
0.18 

0.20 
0.07 

0.34 
0.18 

-0.03 
0.07 

0.00 
0.13 

0.00 
0.08 

0.20 
0.14 

0.10 
0.08 

MRI-CGCM3 -0.47 
0.34 

0.11 
0.08 

0.09 
0.24 

0.10 
0.08 

0.14 
0.08 

-0.04 
0.08 

-0.64 
0.21 

-0.04 
0.08 

NorESM1-M 0.76 
0.24 

0.14 
0.08 

0.52 
0.17 

-0.01 
0.06 

0.39 
0.09 

-0.07 
0.07 

-0.05 
0.16 

-0.09 
0.07 

MME mean 0.91 
0.11 

0.47 
0.06 

0.63 
0.13 

0.10 
0.05 

0.37 
0.07 

-0.06 
0.06 

0.22 
0.10 

0.14 
0.06 

1645	
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Table 6.  The RMSE and standard deviations of the AMO indices in CMIP5 models. 1645	
  
Observations are from the ERSST dataset. 1646	
  

 1647	
  
Model Name RMSE (oC) Standard Deviation (oC) 

ACCESS1-0 0.1846 0.1870 
BCC-CSM1-1 0.1052 0.1528 
CanESM2 0.1532 0.1442 
CCSM4 0.1438 0.1198 
CNRM-CM5 0.1529 0.1031 
CSIRO-Mk3-6-0 0.1609 0.1550 
EC-EARTH 0.1501 0.0914 
FGOALS-g2 0.1835 0.1083 
GFDL-CM3 0.1638 0.1598 
GFDL-ESM2G 0.2110 0.1699 
GFDL-ESM2M 0.1493 0.1273 
GISS-E2-H 0.1376 0.0958 
GISS-E2-R 0.1453 0.1054 
HadCM3 0.1662 0.1421 
HadGEM2-CC 0.1926 0.1895 
HadGEM2-ES 0.1455 0.1517 
INMCM4 0.1485 0.0917 
IPSL-CM5A-LR 0.1800 0.1760 
IPSL-CM5A-MR 0.1374 0.1320 
IPSL-CM5B-LR 0.2240 0.1879 
MIROC5 0.1347 0.1335 
MIROC-ESM 0.1375 0.1467 
MIROC-ESM-CHEM 0.1544 0.1364 
MPI-ESM-LR 0.2123 0.1794 
MPI-ESM-P 0.1526 0.0993 
MRI-CGCM3 0.1515 0.1234 
NorESM1-M 0.1366 0.1118 
MME mean 0.1598 0.1378 
Observations 0 0.1761 
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Table 7. Spatial correlation between observed and CMIP5 regressed anomalies of the 
AMO on SST and precipitation in summer and fall for 1901-1999. The spatial domain for 
SST correlations is over the Atlantic Ocean north of the equator (130°W-10°E, 0°-75°N), 
while the domain for precipitation is the American continent north of the equator 
(130°W-60°W, 0°-60°N). The observed data sets are the HadISSTv1.1 and CRUTS3.1 
data sets for SST and precipitation, respectively. 

Model Summer 
SST 

Fall 
SST 

Summer 
Precipitation 

Fall 
Precipitation 

BCC-CSM1.1            -0.132 -0.205 0.131 0.293 
CanESM2  0.459 0.597 0.080 -0.172 
CCSM4  0.224 0.332 -0.092 -0.172 
CNRM-CM5.1  0.527 0.037 -0.029 -0.357 
CSIRO-MK3.6          0.037 0.308 -0.034 0.211 
GFDL-CM3             -0.213 0.176 0.143 0.145 
GFDL-ESM2M  0.325 0.461 0.129 0.014 
GISS-E2-R  0.586 0.675 -0.070 -0.014 
HadCM3  0.531 0.578 0.008 -0.116 
HadGEM2-ES  0.700 0.485 0.172 -0.309 
INM-CM4  -0.337 -0.126 -0.183 0.025 
IPSL-CM5A-LR  0.180 0.327 -0.072 0.060 
MIROC5  0.433 0.588 -0.196 -0.002 
MIROC-ESM  0.430 0.384 -0.168 -0.033 
MPI-ESM-LR  -0.135 0.230 -0.149 -0.129 
MRI-CGCM3 0.412 0.215 0.335 0.140 
NorESM1-M  0.098 -0.298 -0.127 -0.081 
MME mean 0.577 0.651 -0.012 -0.033 
 1648	
  

 1649	
  

 1650	
  

1651	
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 1651	
  

 1652	
  
Figure 1. Taylor diagram for summer mean (May-September) rainfall over the eastern 1653	
  
Pacific (150oW-80oW; 5oS-30oN) simulated in CMIP5 GCMs. The rainfall observations 1654	
  
are based on TMPA data.  1655	
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1656	
  
Figure 2. Spatial distribution of amplitude (a) and phase (b) of the first leading complex 1657	
  
EOF (CEOF1) mode based on 30-90-day band-pass filtered TRMM rainfall during boreal 1658	
  
summer (June-September) over the eastern Pacific. To make the spatial phase patterns of 1659	
  
the CEOF1 based on the observations and simulations comparable to each other, the 1660	
  
spatial phase of CEOF1 for each dataset is adjusted by setting the domain averaged value 1661	
  
to be zero over a small box region of 110oW-100oW, 10-15oN. Contours are only 1662	
  
displayed where the local variance explained by CEOF1 exceeds 8%; (c): X-axis: Pattern 1663	
  
correlation coefficients of the CEOF1 mode between TRMM observations and CMIP5 1664	
  
GCM simulations. Y-axis: Relative amplitudes of CEOF1 in model simulations to their 1665	
  
observed counterparts. Both pattern correlations and amplitudes are derived by averaging 1666	
  
over the area of 5oN-25oN, 140oW-80oW where the active ISV is observed. The black 1667	
  
“star” mark represents the TMPA observations.	
  1668	
  

 1669	
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 1670	
  

Figure 3. Summertime (June-September) MSD strength (mm/day) for three observational 1671	
  
estimates (TRMM 3B43, UNAM and GPCP) and the CMIP5 MME mean for 23 models 1672	
  
(see Table 3). Also shown (bottom row) are the MME standard deviation and histogram 1673	
  
of the pattern correlations between individual models and the MME mean. All model 1674	
  
output and observational data were regridded onto a common 0.5° grid. 1675	
  
 1676	
  

 1677	
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 1678	
  

Figure 4. Storm track density (top) and mean strength (bottom) for ERA Interim and 1679	
  
seven CMIP5 models (CanESM2, CCSM4, GFDL-ESM2M, HadGEM2-ES, MIROC5, 1680	
  
MPI-ESM-L and MRI-CGCM3). Tracks are based on 6-hourly 850hPa relative vorticity 1681	
  
smoothed to T42 spatial resolution to better capture the synoptic features of the vorticity 1682	
  
field. 1683	
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 1684	
  

Figure 5. Tracks of tropical cyclone-like storms in the CMIP5 historical runs in the 1685	
  
period 1950-2005 (GFDL-ESM2M (1 ensemble member), HadGEM2 (1), MPI-ESM-LR 1686	
  
(3), MRI CGCM3 (5) and MIROC5 (1) models) and in observations for the same period. 1687	
  
The number of storms in each case is given in the bottom right corner of each panel. One 1688	
  
ensemble member is used for each model.  1689	
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 1690	
  

Figure 6. Mean number of TCs per month in models (GFDL-ESM2M, HadGEM2-ES (in 1691	
  
the figure HGEM2), MPI-ESM-LR, MRI-CGCM3, MIROC5) and observations in the 1692	
  
North Atlantic (top left panel) and eastern North Pacific (top right panel), using only 1693	
  
ensemble 1 for MRI-CGCM3. Number of TCs per year in the period 1950-2005 in 1694	
  
models and observations for the North Atlantic (bottom left panel) and eastern North 1695	
  
Pacific (bottom right panel). The blue box shows the 25-75 percentile range, with the 1696	
  
median shown as a red line. The whiskers and red crosses show the data outside of 1697	
  
middle quartiles. 1698	
  

1699	
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 1699	
  

 1700	
  

Figure 7. Upper panels: Comparison of observed and C180HIRAM (one realization) 1701	
  
simulated hurricane tracks for the N. Atlantic and E. Pacific for 1981-2008. Middle 1702	
  
panel: Comparison of observed and C180HIRAM simulated annual hurricane count 1703	
  
statistics. Blue boxes show the 25-75 percentile range, with the median shown as a red 1704	
  
line and the mean shown as a red star. The whiskers show the maximum and minimum 1705	
  
values. The annual statistics are computed based on a 3-member ensemble mean for 1706	
  
1981-2008. Lower panels: Observed and model simulated seasonal cycle (number of 1707	
  
hurricanes per month) for the N. Atlantic and E. Pacific from the 3-member ensemble 1708	
  
mean (1=JAN, 12=DEC) 1709	
  
 1710	
  
 1711	
  

	
  1712	
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  1713	
  

Figure 8. Taylor diagrams for (a) El Niño and (b) La Niña composite 300 hPa 1714	
  
geopotential patterns over the region from East Asia – North America. Higher 1715	
  
performance (pattern correlation > 0.6, RMS difference < 13m in both (a) and (b)) 1716	
  
models are indicated in red, whereas lower performance models are indicated in blue.  In 1717	
  
(a) HadCM3, which falls outside of the plot, has a pattern correlation of -0.3 and RMS 1718	
  
difference of 17.6 m. The points labeled “ens” in red, blue, and green represent the higher 1719	
  
performance, lower performance, and total ensemble, respectively. The composites are 1720	
  
normalized by the Niño 3.4 SST amplitude to focus on pattern differences independent of 1721	
  
ENSO amplitude differences. The observational reference is based on the NCEP/NCAR 1722	
  
reanalysis for 1950-2010, whereas the CMIP calculations are based on the full historical 1723	
  
period (1850-2005) for one run of each model.	
  1724	
  

	
  1725	
  

	
  1726	
  

	
  1727	
  

	
  1728	
  

	
  1729	
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  1730	
  

Figure 9. Composites of (a,b,c) 300 hPa height (z300, m), (d,e,f) near surface air 1731	
  
temperature (SAT, ᵒC), (g,h,i) precipitation (Precip, mm/day), and (j,k,l) SST (ᵒC) 1732	
  
anomalies during DJF El Niño episodes in observations (left column), and both high 1733	
  
(middle column) and low performance CMIP5 ensembles (right column) described in 1734	
  
Fig. 8. The observational SAT and precipitation composites are based on the CRU TS3.1 1735	
  
land near-surface temperature and precipitation datasets for 1901-2009. The z300, SAT, 1736	
  
and Precip composites are normalized by the Niño 3.4 SST anomaly. Stippling in the 1737	
  
observed (a) z300, (d) SAT, and (g) precipitation composites indicates anomalies that are 1738	
  
statistically significant at the 5% level. 1739	
  

	
  1740	
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  1741	
  

Figure 10. Composite DJF El Niño (a) precipitation (mm/day) and (b) SST (ᵒC) 1742	
  
difference between the high and low performance CMIP5 ensemble described in Fig. 8.  1743	
  
Stippling indicates differences that are statistically significant at the 5% level. (c) DJF 1744	
  
SST climatology difference (ᵒC) between the high and low performance ensemble, and 1745	
  
(d) high and (e) low performance SST climatology bias (ᵒC) for the 1951-2000 period.	
  1746	
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 1747	
  

Figure 11. US winter surface air temperature regressed on the EP (top six rows) and CP 1748	
  
(bottom six rows) ENSO indices from observations and the CMIP5 models. 1749	
  
Observational air temperature data are from the NCEP-NCAR reanalysis and SSTs are 1750	
  
from the ERSST dataset for 1950-2010. 1751	
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 1752	
  

 1753	
  
Figure 12. (a) Scatter plot of pattern correlations between the regression patterns from 1754	
  
the CMIP5 models and those from the observations (NCEP-NCAR reanalysis and 1755	
  
HadISST dataset) for EP versus CP ENSO; (b) Scatter plot of the intensities of the EP/CP 1756	
  
ENSO from the CMIP5 models and the observation (ERSST). The values shown are the 1757	
  
maximum standard deviations of the EOF patterns of the two types of the ENSO 1758	
  
calculated using a regression-EOF method. The blue dashed lines indicate the lower limit 1759	
  
of the 95% significance interval of the observed ENSO intensities based on an F-test. 1760	
  

1761	
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 1761	
  

Figure 13. The sum of the composite SST anomalies between the two phases of ENSO 1762	
  
from the HadISST observations and CMIP5 coupled models. The definition of the warm 1763	
  
phase and cold phase of ENSO follows that of Zhang et al. (2009). The length of data 1764	
  
used in the calculation is 50 years for all the models and observations (1950-99). 1765	
  

 1766	
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 1767	
  

Figure 14. The standard deviation (upper panel) and skewness (lower panel) of monthly 1768	
  
Niño-3 SST anomalies from observations and CMIP5 model simulations. The length of 1769	
  
data for computing the standard deviation and skewness is 50 years for the observations 1770	
  
(1950–99). For the model, the standard deviation and skewness were calculated for a 50-1771	
  
year moving window over 100 years of the model run for a total of 601 samples. The 1772	
  
figure shows the mean of the samples and +- the standard deviation across the samples. 1773	
  
Data used are the same as for Figure 13. 1774	
  

 1775	
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  1776	
  

Figure 15. Summertime wet and dry circulation patterns for the central US from the 1777	
  
NCEP/NCAR reanalysis. a) and b) show, respectively, summertime precipitation 1778	
  
anomalies (contours) in wet and dry years, in reference to the Great Plains precipitation, 1779	
  
and the vertically integrated moisture fluxes from the surface to the top of the troposphere 1780	
  
(arrows).  c) The differences between a) and b). d) and e) show the corresponding 850hPa 1781	
  
geopotential height (countour) and 925hPa wind anomalies (arrows) for the wet and dry 1782	
  
summer, respectively. Their differences are summerized in f).  1783	
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  1784	
  

Figure 16. Same as Fig. 15 but for CCSM4 simulation results. 1785	
  

1786	
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  1786	
  

Figure 17. PDO SST patterns in observations and CMIP5 models. Linear regression of 1787	
  
SST on the PDO index in (a) observations and (b) the CMIP5 ensemble, and (c) the 1788	
  
CMIP5 minus observed PDO regression. Observations are from the HadISST dataset for 1789	
  
the period between 1870 and 2009. For the CMIP5 models, the analysis period begins as 1790	
  
early as 1850 and extends to 2005, and a single realization is used for each model. The 1791	
  
contour interval is 0.2ᵒC in (a) and (b) and 0.1ᵒC in (c), with the zero contour omitted.  1792	
  
Stippling in (c) indicates where the differences are statistically significant at the 95% 1793	
  
significance level based on a two-sided t-test. (d) Standard deviation of the PDO SST 1794	
  
regressions within the ensemble.  Contour interval is 0.05ᵒC. 1795	
  

 1796	
  

 1797	
  

 1798	
  

 1799	
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1800	
  
Figure 18. December-February PDO SAT and precipitation regression patterns over 1801	
  
North America. Regressions of DJF SAT (a,c) and precipitation (b,d) on the PDO index 1802	
  
in (a,b) observations and (c,d) the CMIP5 ensemble. The differences between the 1803	
  
regression patterns (CMIP5 minus observations) are shown in (e) and (f). The contour 1804	
  
interval is 0.1ᵒC for the SAT regressions (a, c, e) and 0.05 mm/day for the precipitation 1805	
  
regressions (b,d,f). Stippling in (e) and (f) correspond to differences that are significantly 1806	
  
different at the 95% confidence level based on a two-sided t-test. To focus on 1807	
  
multidecadal variability a Butterworth 10-year low-pass filter is applied to each PDO 1808	
  
index time series, which is then re-standardized and detrended. The SAT and 1809	
  
precipitation anomalies are then regressed on the filtered index for each season. The 1810	
  
observations are the CRU TS3.1 temperature and precipitation datasets.  1811	
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 1812	
  

 1813	
  

Figure 19. The JJASON AMO index in CMIP5 models compared to observations for (a) 1814	
  
the time series and (b) autocorrelations. The AMO index is defined as the the 11-year 1815	
  
running mean of the detrended North Atlantic SST during the Atlantic hurricane season 1816	
  
of June to November (JJASON) from the equator to 60°N, 75°W-5°W. SST observations 1817	
  
are from the ERSST dataset.  1818	
  

 1819	
  
 1820	
  

 1821	
  

 1822	
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  1823	
  

Figure 20. Autumn (SON) regressions of the AMO index on SST and precipitation from 1824	
  
observations (HadISSTv1.1 and CRU TS3.1), and 17 CMIP5 models for 1901-1999. The 1825	
  
AMO index is the area-averaged SST anomalies over the domain (75°-5°W, 0°-60°N), 1826	
  
which are detrended and then smoothed via a 11-year running mean. Regressions are 1827	
  
calculated for the first ensemble member for each model; observed and simulated 1828	
  
anomalies have been regridded to a 1.5°×1.5° grid for precipitation, and a 5°×2.5° grid 1829	
  
for SST. Blue/red shading denotes negative/positive SST anomalies, while brown/green 1830	
  
shading denotes negative/positive precipitation anomalies. Contour interval is 0.1K and 1831	
  
0.02 mm day-1, respectively. 1832	
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(a) Annual Temperature Trend (°C/decade), 1930-2004 

 

(b) Summer (JJA) Temperature Trend (°C/decade), 1930-2004 

	
  

(c) Winter (DJF) Temperature Trend (°C/decade), 1930-2004 

	
  

Figure 21. Observed and MME mean temperature trends (°C/decade) for North America 1833	
  
(1930-2004) for (a) annual, (b) summer, and (c) winter. Observations are from the CRU 1834	
  
TS3.1 dataset. The MME mean is calculated from the first ensemble member of 17 1835	
  
models (BCC-CSM1.1, CanESM2, CCSM4, CNRM-CM5, CSIRO-Mk3-6-0, GFDL-1836	
  
CM3, GFDL-ESM2M, GISS-E2-R, HadCM3, HadGEM2-ES, INMCM4, IPSL-CM5A-1837	
  
LR, MIROC5, MIROC-ESM, MPI-ESM-LR, MRI-CGCM3, NorESM1-M). Eastern and 1838	
  
western US regions are shown by the boxes. 1839	
  

1840	
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 1840	
  
(a) Eastern US 

 

(b) Eastern - Western US 

 

 1841	
  
Figure 22: 30-year running annual temperature trend for (a) the Eastern US, (b) 1842	
  
difference in trend between the Eastern and Western US. Regions are defined in Fig. 21. 1843	
  
Shading represents the 95% uncertainty range calculated from 17 models (see Fig. 21), 1844	
  
one ensemble member from each model. Black solid line is the observation (CRU TS3.1) 1845	
  
and blue solid line is the MME median. X-axis represents the start of the 30-year running 1846	
  
period. For example, the trend value at 1930 represents the trend from 1930 to 1959.  1847	
  

 1848	
  

 1849	
  

 1850	
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Figure 23. Comparison of (a) mean DTR and (b) DTR trend for the obsevrations (CRU 1851	
  
TS3.1) and MME mean of the 17 models (right; see Fig. 21) for 1951-2000. The contour 1852	
  
lines are the inter-model standard deviation.  1853	
  

1854	
  

                                (a) 

	
  
                                               (b) 
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 1854	
  

 1855	
  

Figure 24. Observed and MME mean annual precipitation trends (mm/decade) for North 1856	
  
America (1930-2004). Observations are from the CRU TS3.1 dataset. The MME mean is 1857	
  
from 17 models (see Fig. 21), 1 ensemble member from each model. Eastern and western 1858	
  
US regions are shown by the boxes. 1859	
  

 1860	
  

1861	
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 1861	
  

 1862	
  

Figure 25. 30-year running annual precipitation trend (mm/decade) for (a) the Eastern 1863	
  
US, and (b) the Western US. Regions are shown in Fig. 23. The shaded region is the 95% 1864	
  
uncertainty range calculated from 17 models (see Fig. 21), one ensemble member from 1865	
  
each model. Black solid line is the observation (CRU TS3.1) and blue solid line is the 1866	
  
MME median. X-axis represents the start of the 30-year running period. For example, the 1867	
  
trend value at 1930 represents the trend from 1930 to 1959. 1868	
  

 1869	
  

(a) Eastern US 

 

(b) Western US 

 


